

AI-augmented automation supporting modelling, coding,

testing, monitoring and continuous development in

Cyber-Physical Systems

D2.3 - Data Collection and
Representation - Final Version

This project has received funding from the ECSEL Joint Undertaking (JU) under grant agreement No 101007350. The JU
receives support from the European Union’s Horizon 2020 research and innovation programme and Sweden, Austria, Czech

Republic, Finland, France, Italy, and Spain. This document reflects only the author's view and the Commission is not
responsible for any use that may be made of the information it contains.

Ref. Ares(2023)5304678 - 31/07/2023

 Page 2

AIDOaRt Project nr. 101007350

Contract number: 101007350

Project acronym: AIDOaRt

Project title:
AI-augmented automation supporting modelling, coding, testing, monitoring and
continuous development in Cyber-Physical Systems

Delivery Date: July 31, 2023

Authors: Sergio Morales (UOC), Julio Medina (UCAN), and
Representatives of all the involved Solution and Use Case providers via their
contribution to the project's common Modelio model, which has all their data models.

Contributing Partners: ABI, ACO, AND, AST, AVL, BT, CAMEA, CSY, DT, HIB, IMTA, ITI, PRO, ROTECH, SOFT, TEK,
UCAN, UOC, VCE, WESTMO.

Date: Jul 28, 2023

Version V1

Revision: 06

Abstract: This deliverable is a consolidated and extended version of D2.2 [AIDOART-D2.2]
considering the feedback by the end-users, integrating the latest features, and
proposing a mega model as a comprehensive data modelling managing tool for the
AIDOaRt use cases.

This deliverable provides the final version of the AIDOaRt Data Engineering Tool Set..

Status: Type: Other, Dissemination Level: PU

 Page 3

AIDOaRt Project nr. 101007350

DOCUMENT REVISION LOG

VERSION REVISION DATE DESCRIPTION AUTHOR

V1 01 11/07/2023 First Document automated Generation
from the modelling repository of the
project.

Bilal Said (SOFT)

 02 11/07/2023 Completed with Section 7 Sergio Morales
(UOC)

 03 14/07/2023 Complete updated document ready for
internal review

Julio Medina
(UCAN)

 03.5 24/07/2023 Feedback from reviewers Bilal Said (SOFT)
Anna Reale (DT)
Mattia Modugno
(ROTECH)

 04 27/07/2023 Considering of the reviewers’ comments
and adding conclusions

Julio Medina
(UCAN) & Sergio
Morales (UOC)

 05 28/07/2023 Solving Cross-references in the word
version

Julio Medina
(UCAN)

 06 28/07/2023 Completing mappings Julio Medina
(UCAN) & Sergio
Morales (UOC)

 Page 4

AIDOaRt Project nr. 101007350

Executive Summary

This deliverable proposes a mega model as a comprehensive data modelling managing tool for the
AIDOaRt use cases. Also, it refines the intermediate version of deliverable D2.2 [AIDOART-D2.2]
considering the feedback provided by the end-users and integrating the latest features of the tools
involved in the implementation of the use cases, then offering a consolidated and extended version of
it.

This deliverable is the final version of the AIDOaRt Data Engineering Tool Set developed within the
Tasks T2.1 (Design time and Runtime data collection), T2.2 (AIDOaRT data internal representation),
and T2.3 (Data cleaning, analysis, and management). It is a refinement of the Data Engineering Tool
Set built within the AIDOaRt architecture. It updates the mapping to the interfaces of the generic
components defined in the Data Engineering Tool Set to (1) specific methods and tools provided by
solution providers, and (2) use case requirements of Use Case providers that can potentially be
satisfied through those components. Furthermore, it defines a generic data representation and maps
data requirements to corresponding data representations. It provides updates regarding tool
components delivered until M28. This deliverable also contains an update on use cases with a special
focus on their data requirements and how they link to solutions.

It also provides the status of the different solutions for the AIDOaRt Core Tool Set components. Finally,
it defines a mega-model to allow providing a global data representation that can be accessed and
reused in various stages of the AIDOaRt process. This is an abstracted and elaborated summary of the
data models used in the use cases with the aim of providing a common, agreed-upon, global data
representation to serve as the foundation for MDE-based activities throughout the AIDOaRt
framework.

 Page 5

AIDOaRt Project nr. 101007350

Table of Contents

DOCUMENT REVISION LOG ... 3

Executive Summary .. 4

Key Terminology Abbreviations .. 8

Partners Names Acronyms .. 9

1 Introduction .. 10

2 Progress status of the AIDOaRt Data Engineering Tool Set .. 11
2.1 Solution - ESDE (ACO)).. 11

2.1.1 News and Updates ... 12
2.1.2 Capabilities Implementation Status .. 14

2.2 Solution - Position Monitoring for Industrial Environment (ACO)) 15
2.2.1 News and Updates ... 15
2.2.2 Capabilities Implementation Status .. 18

2.3 Solution - Kolga (AND) .. 19
2.3.1 News and Updates ... 19
2.3.2 Future Capabilities Implementation Roadmap ... 19

2.4 Solution - devmate (AST) .. 20
2.4.1 News and Updates ... 20
2.4.2 Capabilities Implementation Status .. 20
2.4.3 Future Capabilities Implementation Roadmap ... 20

2.5 Solution - Keptn (DT) .. 21
2.5.1 News and Updates ... 21
2.5.2 Capabilities Implementation Status .. 21

2.6 Solution - EMF Views (IMTA) .. 23
2.6.1 News and Updates ... 23
2.6.2 Capabilities Implementation Status .. 24
2.6.3 Future Capabilities Implementation Roadmap ... 24

2.7 Solution - a2k-runman (ITI) .. 25
2.7.1 News and Updates ... 25
2.7.2 Capabilities Implementation Status .. 28
2.7.3 Future Capabilities Implementation Roadmap ... 28

2.8 Solution - ConvHandler (ROTECH) .. 29
2.8.1 News and Updates ... 29
2.8.2 Capabilities Implementation Status .. 29

2.9 Solution - Bridger (ROTECH) ... 29
2.9.1 News and Updates ... 29
2.9.2 Capabilities Implementation Status .. 30

2.10 Solution - AsyncAPI Toolkit (UOC) .. 30
2.10.1 News and Updates ... 31
2.10.2 Future Capabilities Implementation Roadmap ... 31

 Page 6

AIDOaRt Project nr. 101007350

3 Mapping Solutions to AIDOaRt Data Engineering Tool Set Components 32
3.1 Mapping to Data Collection ... 32
3.2 Mapping to Data Management .. 33
3.3 Mapping to Data Representation ... 35
3.4 Updates from the previous deliverable ... 36

4 Mapping Use Case Requirements to AIDOaRt Data Engineering Tool Set Components . 37
4.1 Mapping to Data Collection ... 37
4.2 Mapping to Data Management .. 44
4.3 Mapping to Data Representation ... 51
4.4 Concluding remark ... 53

5 Applications of AIDOaRt Data Engineering Tool Set Solutions in Use Cases 54
5.1 Operating Life Monitoring - TEK, ROTECH ... 54
5.2 Application in Anomaly Detection in Cyber-Physical Systems – Location Optimization
Challenge - PRO, ACORDE, ITI, UOC .. 55

5.2.1 Data Quality IoT ... 56
5.2.2 Infrastructure Performance Resizing of Resources Based on Current Workload -
Power Aware Scheduling ... 59
5.2.3 Positioning Monitoring for Industrial Environment .. 61

5.3 Concluding remark ... 63

6 AIDOaRt Data Mega-Model .. 64
6.1 Definition, Goals and Expected Benefits of the AIDOaRt Mega-Model 64
6.2 Approach to Design the AIDOaRt Mega-Model ... 66

6.2.1 Collect UC Data Models ... 66
6.2.2 Analyse UC Data Models.. 67
6.2.3 Normalise UC Data Models .. 67
6.2.4 Create the Generic Layer ... 68

6.3 Use Case Data Models .. 68
6.3.1 ABI .. 68
6.3.2 AVL ... 69
6.3.3 BT ... 77
6.3.4 CAMEA ... 79
6.3.5 CSY ... 81
6.3.6 HIB ... 84
6.3.7 PRO .. 85
6.3.8 TEK ... 90
6.3.9 VCE ... 93
6.3.10 WETMO .. 96

6.4 AIDOaRt Generic Data Model .. 99
6.4.1 Requirements Engineering .. 99
6.4.2 Modelling ... 100
6.4.3 Testing ... 102
6.4.4 Monitoring ... 104

 Page 7

AIDOaRt Project nr. 101007350

6.5 Conclusions and Next Steps ... 107

7 Conclusion .. 109

8 Bibliography ... 110

 Page 8

AIDOaRt Project nr. 101007350

Key Terminology Abbreviations

Abbreviations Terminology
AI Artificial Intelligence
AIOps AI Operations
CPS Cyber-Physical Systems
CPSoS Cyber-Physical Systems of Systems
DevOps Development Operations
MBE Model-Based Engineering
MBRE Model-based Requirements Engineering
MDE Model-Driven Engineering
ML Machine Learning
RTOS Real Time Operating System
SE Systems and Software Engineering
SLR Systematic Literature Review
SMS Systematic Mapping Study
SysML Systems Modeling Language
UC Use Case
UML Unified Modelling Language
WP Work Package

 Page 9

AIDOaRt Project nr. 101007350

Partners Names Acronyms

In the following table, we list the partners’ acronyms and full names. The short acronyms are used
throughout the deliverable text to identify the partner providing a particular case study requirement
or data requirement, or providing a given solution.

Partner Name
Acronym

Full Partner Name

ABI Abinsula SRL
ABO Åbo Akademi
ACO ACORDE Technologies S.A.
AIT AIT Austrian Institute of Technology GmbH
AND Anders Innovations Oy
AST Automated Software Testing GmbH
AVL AVL List GmbH
BT Bombardier Transportation
CAMEA CAMEA, spol. s r.o.
CSY CLEARSY SAS
DT Dynatrace Austria GmbH
HIB HI Iberia Ingeniería y Proyectos S.L.
IMTA Institut Mines-Telecom Atlantique Bretagne-Pays de la Loire
INT Intecs Solutions S.p.A.
ITI Instituto Tecnológico de Informática
JKU Johannes Kepler University Linz
MDH Maelardalens Hoegskola (Coordinator)
PRO Prodevelop SL
QEN Qentinel Oy
RISE RISE Research Institutes of Sweden
ROTECH Ro Technology srl
SOFT Softeam
TEK Tekne SRL
TUG Technische Universitaet Graz
UCAN Universidad de Cantabria
UNISS Università degli Studi di Sassari
UNIVAQ Università degli Studi dell'Aquila
UOC Fundació per a la Universitat Oberta de Catalunya
VCE Volvo Construction Equipment AB
WESTMO or WMO Westermo Network Technologies AB

 Page 10

AIDOaRt Project nr. 101007350

1 Introduction

Besides the description of the content of this deliverable already expressed in the executive summary,
it may be convenient to indicate that this is the last deliverable planned to report labour on work
package 2.

Among the content in this deliverable the most novel kind of data is the formalisation of the individual
data models of the use cases, as well as the mega-model in UML, more precisely in the modelling
environment of the Modelio tool. This allows providing a global data representation that can be
accessed and reused in any stage of the AIDOaRt process with easy automation. Hence, serving as a
foundation for MDE-based activities throughout the AIDOaRt framework.

Since, according to the initial description of work, by this month of the project labour in WP2 is to be
finished, further exploitation, usage, and eventual improvements of the mega-model will be reported
in future deliverables of other work packages, mainly those of the integration work package (WP5).

Observe that the data models of the use cases prepared by the use case providers as well as the mega-
model of the project, even though they are fully described here in this document, they become useful
in real practice by using their automatable XMI or other equivalent model serialisations. This model
will remain available to all partners in the corresponding Modelio SAAS AIDOaRt repository.

The document is structured as follows.

Section 2 shows the development status and prospective roadmap for some solutions related to the
AIDOaRt Data Engineering Tool Set and the concrete capabilities they provide.

Section 3 presents the list of solution components realising the functional specification of the Data
Engineering Tool Set components.

Section 4 presents an update in the mapping of the use case requirements and data requirements to
the Data Engineering Tool Set components.

Section 5 presents some concrete applications of AIDOaRt Data Engineering Tool Set Solutions in
specific Use Cases that have requested the facing of stated specific challenges. These challenges were
proposed and discussed in the context of hackathons realised in various plenary meetings and can be
found in deliverable D5.3 [AIDOART-D5.3]

Section 6 elaborates on the mega model on top of the UML representation of all the data models from
all AIDOaRt use cases.

Section 7 sketches some concluding remarks and links to other documentation.

Finally, Section 8 includes some bibliographic references made along the text.

 Page 11

AIDOaRt Project nr. 101007350

2 Progress status of the AIDOaRt Data Engineering Tool
Set

This section gives an overview of the implementation achievements and development status of the
AIDOaRt Data Engineering Tool Set solutions with regards to the milestones of the AIDOaRt project, as
stated in deliverables D2.1 and D2.2. This section briefly describes the current status of the solutions
and tools.

In this section, we include solutions having features that are released since M21 and up to the end of
the project. Solution providers present:

* in a first subsection entitled "Capabilities Implementation Status", the features released from M21
to M28 (i.e., the submission date of the current deliverable D2.3), covering features with release dates
declared at MS5 (M24) and MS6 (M28) of the project;

* in a second subsection entitled "Future Capabilities Implementation Roadmap", the features to be
released from M29 up to M36, i.e., after the submission date of the current deliverable D2.3 and up
to the end of the project, covering features with release dates declared at MS7 (M32) to MS8 (M36).

To briefly summarise the reported status, it should be noted that:

● 10 tools are related to the AIDOaRt Data Engineering Tool Set,

23 tool purposes are related to the solutions participating in core issues:

● 1 concerns the release at the Intermediate milestone (M20)

● 8 concern the release at this deliverable (M21 up to M28)

● 14 concern the release at the final milestone (M29 up to M36)

Considering the three main axes of Data Engineering in our AIDOaRt Framework:

● 6 implement or can be considered as Data Collection components

● 7 implement or can be considered as Data Management components

● 2 implement or can be considered as Data Representation components.

2.1 Solution - ESDE (ACO))

This solution implements the following Data Engineering Tool Set components:

● Data Collection

● Data Management

 Page 12

AIDOaRt Project nr. 101007350

2.1.1 News and Updates

As explained in section 3.1 of D2.2, a main purpose of ACORDE in AIDOaRt is to extend the ESL
embedded Software Development Environment (ESDE) to enable a “deep validation” of embedded
software (eSW) on top of a virtual platform model (virtual platform-in-the-loop or VIL). “Deep
validation” here means that, as well as a functional validation, performance analysis and even
anomalies detection is supported, by exploiting a holistic set of logs/traces that reflect key information
on the system status. Specifically, in our approach, that means to extract traces from several levels of
the system (multi-level tracing), which can encompass different software layers (application, RTOS,
drivers) and hardware components (e.g., processor instructions, memory bank accesses, etc).
Therefore, a critical pre-requisite is a proper data collection and management which enables such
multi-level tracing and its exploitation.

Figure 1 focuses on the collection and management of data from the virtual embedded system model
in the ESDE framework. It summarises the progress of such data collection and management. An
orange-coloured box has been used to explicitly show relation to the AIDOaRt architecture.

Figure 1 Data collection and management in the virtual embedded system

Specifically, ACORDE has worked in order to enable, a data collection of events from different levels
of the virtual model of the embedded system, and to facilitate flexible and powerful data
management, via enabling efficient storage and retrieving of such data by collecting it on time -series
suited, cutting edge data services, i.e., by relying on Influxdb. Moreover, as shown in the figure, the
developed approach provides support for powerful data representation based on Grafana.

All this is sustained on several ACORDE developments in relation to AIDOaRt WP2 aspects and
activities:

● A tracing plugin that provides the capability to set up fundamental SW and HW level event
monitors (e.g., function entry/exit, write access to the memory region, etc.). This plugin has a
generic part and specific parts (dependent on the compiler and VP framework, i.e., GCC and

 Page 13

AIDOaRt Project nr. 101007350

OVP in this case). This plugin generates text-based traces, either as a single or separated CSV
files with the monitored/traced events.

● An adapter to the database in charge of adapting and inserting the aforementioned traces
into the time-series specific format of the database.

● Specific dashboarding for the multi-level analysis of embedded systems.

Figure 2 provides a more specific example. It shows the trace produced after running an application
with 4 nesting levels (a main function that invokes 16 times a function called foo, which in turn invokes
16 times the bar function, which in turn calls 16 times the function thud).

Figure 2 Trace produced after running an application with 4 nesting levels

At the left bottom side, the beginning of the trace file is shown, with a format header and then all the
related events at its cycle-accurate time in order of occurrence. This single-file compact format is
convenient for most of the cases. The example illustrates a multi-trace yet at a single level, i.e.
application software level. However, as mentioned, the trace can contain events related to different
levels of the system. For instance, bar could be an RTOS function, while thud a driver-level function.

Once this capability for multi-level tracing and database management is ready, all the components
required for automated or semi-automated bug detection are in place, as an initial version of the
generic anomalies analysis (GAA) has already been developed (in the context of WP4) and its
evaluation started in the context of port data (WP5 context).

Therefore, the capability of automatic (or semi-automatic) anomaly detection from the embedded
traces is partially implemented, but not completed yet. As ACORDE has made explicit in different
forums (telcos, meetings) of the project, ACORDE is executing the “Positioning Monitoring Solution for
Industrial Environment” solution with higher priority than the “ESDE extension” solution. The main
reasons are that the former solution has more immediate exploitation chances and that it has required
hardware design and development. Furthermore, at the same time, it has also meant the development
of the GAA, which, as mentioned, is a main component of the ESDE extension tackled in AIDOaRt. At

 Page 14

AIDOaRt Project nr. 101007350

the time of this report writing, GAA is still being evaluated and polished at the distributed domain for
port-sensed data. Once this is well consolidated, a very interesting aspect that ACORDE aims to
evaluate is the transversality of the GAA technology, i.e., that it can be effectively applied to the
embedded domain. Therefore, the aforementioned priorities and the need to cover all the necessary
steps involve the revision of the estimated delivery of the automated analysis of embedded traces,
now estimated by M36.

2.1.2 Capabilities Implementation Status

Capability Name & Description Implementation Status Comments / Release notes
Multi-level functional and
performance logs and traces:
Framework able to provide time
series of performance metrics at
different levels of abstraction and at
different implementation levels
(platform HW, platform SW,
application SW)

Implementation Level:
Implemented
Estimated Delivery Date:
MS4 (M20)
Licence: Proprietary –
ACORDE.
It refers to specific
extensions performed on
ESDE to obtain functional
and performance logs
and traces developed by
ACORDE and considered
key for protecting
competitive advantages
achieved thanks to
AIDOaRt.
See note (*) below.

Tracing techniques
implemented, with compiler
(GCC) and VP framework
(Imperas) specificities. Work
on WP2 enabled fundamental
facilities for multi-level SW
and HW level tracing in place.
WP2 work also enabled
automated insertion of
collected data on database
and facilities for multi-level
traces visualisation.

Automated (or semi-automated) bug
detection/prediction:
Ability to learn and detect or predict
possible functional or performance
bugs based on performance traces.
Two possibilities envisioned. First
one, based on offline trace analysis,
can handle non-causal analysis for
better anomalies/errors detection.
This feature will support product fixes
and development smoothly
integrated in a DevOps environment.
A second possibility is to simulate the
system equipped with monitoring
probes and a ML engine capable to
use the collected metrics for an on-
the-fly (real-time, or at least causal)
computation for detecting/predicting
anomalies.

Implementation Level:
Partially Implemented
Estimated Delivery Date:
MS5 (M36)

Licence: Proprietary –
ACORDE. It refers to
specific extensions
performed for
automated or semi-
automated bug
detection and/or
prediction on the
embedded domain.

See note (*) below.

WP2 work enabled us to put
in place all the fundamental
components, like former
prototypes of multi-level
tracing and database
managing, and a former
version of the generic
anomalies analysis module. It
is complemented with further
database and visualisation
infrastructure. Further
evaluation of this framework
is ongoing to consider its
suitability for the embedded
domain. The delivery is
replanned by M36 so that use
case-related data can be
considered too

Table 2 Capabilities Implementation Status of the ESDE Solution

 Page 15

AIDOaRt Project nr. 101007350

(*) It excludes any open-source and/or third-party source used and any open-source extension that
needs to be published. In addition, ACORDE may release fixes and extensions which do not
compromise ACORDE’s competitive advantages granted by AIDOaRt as open source.

2.2 Solution - Position Monitoring for Industrial Environment (ACO))

This solution implements the following Data Engineering Tool Set components:

● Data Collection

● Data Management

2.2.1 News and Updates

In section 3.2.1 of D2.2, an overview of the industrial monitoring solution developed by ACORDE, with
specific support for position monitoring was provided. This section reports the main advances in the
data collection and management of the infrastructure developed by ACORDE. Figure 3 sketches some
of those main advances so far.

 Page 16

AIDOaRt Project nr. 101007350

Figure 3 Main advances in the data collection and management of the infrastructure developed by ACORDE

ACORDE has completed the development of a first version of Gateway (GW on the figure) based on a
development platform relying on an ARM53 quad-core architecture. The bottom right-hand part of
the figure shows that implementation with its envelope as it was used and shown in past May 11th at
the demonstrators' session in the plenary meeting of Vasteras. Moreover, in that meeting, ACORDE
also showed a second version of the Gateway based on a custom hardware design, which will bring
certain advantages, such as supporting wireless interfaces, higher storage capability and industrial
temperature ranges. The base of that ACORDE design is a modular platform, shown in the bottom left-
hand side of the figure. This modular platform is being employed also on the positioning sensor (PIoT
in the figure). The hardware design of the PIoT has been completed. The GNSS receivers have been
selected and integrated into the platform. Here, a main update is that the design of the positioning
sensing is no longer supported by an additional network of UWB beacons. Further discussion with
Prodevelop, the Smart Port Monitoring UC provider, enabled further polishing of the requirements
and their priority. It was specified that the PIoT+Gateway devices should be mounted on a straddle

 Page 17

AIDOaRt Project nr. 101007350

carrier crane, shown in the figure), with higher mobility than an STS crane. This meant a more
demanding position update rate (10 Hz) while keeping a demanding accuracy (<1m). This performance
requirements update involved a re-design of the positioning sensing solution (technology and
architecture). The PIoT design relies now on a fusion of local sensors (INS) and RTK receiver, where the
support from UWB beacons (as posed in the initial solution) lose focus. On the other hand, the renewed
architecture now includes a GNSS base station visible in the port's local network. An interesting aspect
is that the renewed solution still benefits from the continuum computing architecture of the solution.

The figure also illustrates the data collection and management services that have been put in place in
the Gateway. These are a brokering service (BR) to retrieve data from the ethernet interface; a data
collection/adaptation (DC) service in charge of retrieving data from the broker, and other type of
interfaces that are planned to be added to the Gateway (e.g. for low-power wireless access to other
sensors) and insert them into the database; and finally, a time series database (Influxdb). The proper
run of these services on the Gateway (together with other analysis services) was also shown in the 4th
hackathon demonstration session, hosted in our plenary meeting of May 11th 2023 in Västeras.

As well as the advances in the aforementioned data collection and management IoT+Edge
infrastructure, ACORDE has also advanced in stating the data model in key interfaces. One of those
interfaces is how the Gateway offers positioning data to the monitoring infrastructure set up by
Prodevelop. This data model states both, the positioning data and quality indicators, and has been
formalised in the shape of a UML class model that has been integrated into the Modelio data model
of the Smart Port Monitoring Platform (SPMP). It is shown in Figure 4, where the new elements added
to the SPMP Data model are bounded by a dashed box.

Figure 4 Model of Position data and its quality as integrated on the SPMP data model

Finally, ACORDE has also made an initial effort to formalise the configuration, input and output
interface data of its Generic Anomalies Analysis (GAA) component. Such a model in its current state is
represented in Figure 5 and has been initially shown to UC partners with modelling expertise (UoC).

 Page 18

AIDOaRt Project nr. 101007350

Figure 5 Model of Generic Anomalies Analysis configuration data

2.2.2 Capabilities Implementation Status

Capability Name &
Description

Implementation Status Comments / Release notes

Monitoring System
Design and
Development:
Integration of
monitoring
infrastructure based
on docker containers
and open software
solutions (Grafana,
Prometheus, InfluxDB,
Zabbix…)

Implementation Level:
Partially Implemented
Estimated Delivery Date:
MS4 (M32)
Licence: Proprietary –
ACORDE.
It refers to a specific
monitoring solution on the
Cloud-Edge-IoT architecture
developed by ACORDE and
considered key for
protecting competitive
advantages achieved thanks
to AIDOaRt. Note (*) of
section 1.1.2 applies

ACORDE has
i) consolidated and formalised a data
model on the positioning data to transfer
to the monitoring system
ii) completed and demonstrated the
HW/SW gateway design, and
complemented the design of the PIoT
(whose SW design evaluation is on-going)
 iii) run and showed the possibility to run
data collection and management, and
even analysis services within the
Gateway.
The PIoT infrastructure will be completed
and used to generate real data and
complete the evaluation of the generated
infrastructure in the frame of WP5. This
means that the complete delivery of this
infrastructure is expected a bit later than
initially expected (M24), i.e. by M32.

AI/ML based analysis
of monitored data:
ACORDE aims at
enabling an
automated AI/ML
based processing of
monitored data from
the Monitoring System
which enables

Implementation Level:
Implemented
Estimated Delivery Date:
MS5 (M24)
Licence: Proprietary –
ACORDE.
It refers to specific AI/ML
analysis methods applied on
the data retrieved from the

As it was shown in the demonstrator
session of Vasteras Plenary meeting May
11th, 2023, ACORDE has an initial
implementation of Generic Anomalies
Analysis (trained for a specific data),
running on the gateway. The possibility to
perform these types of analyses and run
at the edge of the continuum computing
architecture of the monitoring

 Page 19

AIDOaRt Project nr. 101007350

detection (and
eventually prediction)
of anomalies.

monitoring solution on the
Cloud-Edge-IoT architecture
developed by ACORDE and
considered key for
protecting competitive
advantages achieved thanks
to AIDOaRt.
Note (*) of section 1.1.2
applies.

infrastructure is ready. Yet, ACORDE will
go on evaluating and polishing this result
in the remaining efforts related to WP4
and WP5.

Table 3 Capabilities Implementation Status of the Position Monitoring for Industrial Environment Solution

2.3 Solution - Kolga (AND)

This solution implements the following Data Engineering Tool Set components:

● Data Collection

2.3.1 News and Updates

Initial demo application deployed and solution framework with all the components exists.

2.3.2 Future Capabilities Implementation Roadmap

Capability Name & Description Implementation
Status

Roadmap and Planning

Kólga:
Tool for creating CI/CD pipelines using
GitLab/GitHub/Azure that can build, test and
deliver applications to Kubernetes clusters.
Highly flexible solutions can be created on top
of the tool, such as AI testing all using the
tools such as Github Actions that could
already be in use. An example would be to
bring a web service from just source code to
running in a scalable production environment
in a very short (minutes) time. Our only
requirements are that the application is based
on a container technology such as Docker and
that the final running environment is
Kubernetes. In other words, Kólga can also
enable running your application in the edge
for instance.

Implementation
Level: Partially
Implemented
Estimated
Delivery Date:
MS7 (M32)
Licence: MIT

Robusting the codebase
from POC level to MVP
level. Production-ready
deployment and continuous
training/deployment of the
app

Table 4 Future Capabilities Implementation Roadmap of the Kolga Solution

 Page 20

AIDOaRt Project nr. 101007350

2.4 Solution - devmate (AST)

This solution implements the following Data Engineering Tool Set components:

● Data Collection

● Data Management

2.4.1 News and Updates

We are currently working on an improvement of the devmate Equivalence Class Prediction System.
Currently it is focused on storing data for each user individually. We defined a concept for a centralised
data store which makes it possible to share defined test data among several users of devmate.

2.4.2 Capabilities Implementation Status

Capability Name &
Description

Implementation Status Comments / Release notes

Code Parser:
Parse input-/output-
parameters from existing
code or unit-/system-
models (eg. XML / DSL
specified models)

Implementation Level:
Partially Implemented
Estimated Delivery
Date: MS5 (M24)
Licence: Proprietary
licence (Automated
Software Testing GmbH)

We have implemented code parsers for
C# and Java. A C parser is in
development and available for testing.
The code parser produces an
intermediate test model for use in
devmate.

Testcase Generator:
Generating a set of
testcases based on rules
(data-driven, combination
of input parameters / data)

Implementation Level:
Partially Implemented
Estimated Delivery
Date: MS6 (M28)
Licence: Proprietary
licence (Automated
Software Testing GmbH)

Test-Case generator is implemented at
this point and marked for a future
review

Table 5 Capabilities Implementation Status of the devmate Solution

2.4.3 Future Capabilities Implementation Roadmap

Capability Name & Description Implementation Status Roadmap and Planning
Testmodel Editor:
Automatically combining and
generating testcases for
system/unit under test (primarily
blackbox validation test
techniques)

Implementation Level:
Partially Implemented
Estimated Delivery
Date: MS7 (M32)
Licence: Proprietary
licence (Automated
Software Testing GmbH)

Testmodel Editor has had a major
update and redesign in the
newest version. The editor
directly manipulates the internal
test model

Testcase Evaluation:
AI/ML augmented evaluation and
reduction of testcases (based on

Implementation Level:
Not Implemented

Future development efforts will
revisit metrics and code coverage
while current efforts are focused

 Page 21

AIDOaRt Project nr. 101007350

an extendable set of metrics e.g.
coverage, mutation score, test
runtime)

Estimated Delivery
Date: MS7 (M32)
Licence: Proprietary
licence (Automated
Software Testing GmbH)

on language support and
usability

Testdata prediction system:
AI/ML supported testdata
specification (testdata
management, similarity measures,
testdata prediction system)

Implementation Level:
Not Implemented
Estimated Delivery
Date: MS8 (M36)
Licence: Proprietary
licence (Automated
Software Testing GmbH)

Research into similarity and
prediction systems are currently
on halt.

Model Parser:
Parse input-/output-parameters
from existing unit-/system-models
(eg. XML / DSL specified models)

Implementation Level:
Not Implemented
Estimated Delivery
Date: MS8 (M36)
Licence: Proprietary
licence (Automated
Software Testing GmbH)

Models can be parsed through
Code Parser and support will be
added on demand.

Table 6 Future Capabilities Implementation Roadmap of the devmate Solution

2.5 Solution - Keptn (DT)

This solution implements the following Data Engineering Tool Set components:

● Data Management

2.5.1 News and Updates

The Keptn tool v 1.4.0 has been released, including consistent changes to improve the tool usability in
the Data Management for CSP use cases. Mainly: Event specs for rollback/remediation scenarios have
been finalised, the user interface for quality gates now shows a breakdown of SLIs for easy data
visualisation, and the storage solution using git has been made faster and more reliable. Furthermore,
the usage of a git repo to keep track of the sequences and run data is now mandatory.

2.5.2 Capabilities Implementation Status

Capability Name & Description Implementation
Status

Comments / Release notes

Keptn CloudEvents:
The event-based approach is built
upon a well-defined defined set of
Keptn events; currently in v0.2.2.
All Keptn events conform to the
CloudEvents specification in
version v1.0. The CloudEvents

Implementation
Level: Partially
Implemented
Estimated Delivery
Date: MS6 (M28)
Licence: Keptn is made
available under the

Version 0.2.4 of Keptn Spec has
been released. This showcases
progress in the event data
definition since now the Rollback
Triggered remediation event is
defined.
We are currently designing

 Page 22

AIDOaRt Project nr. 101007350

specification is a vendor-neutral
specification for defining the
format of event data. In the
course of the Keptn project, the
event data is defined for the use-
cases of application delivery and
remediation as well as life-cycle
orchestration tasks such as
deployment, test, evaluation,
release, problem, etc. The
specification of Keptn CloudEvents
is not limited to the mentioned
tasks and can be easily extended
by following the proposed format.
The Keptn project is currently in
the progress of aligning the Keptn
events with the event
specification from the Continuous
Delivery Foundation (CDF) with
the goal of establishing an
industry-wide eventing standard
for application life-cycle
orchestration.

terms of the Apache
2.0 licence. Any use of
this Background by
any Participant is
subject to and must
conform to Apache 2.0
(https://github.com/k
eptn/keptn/blob/m
aster/LICENSE).

example sequences, to ensure that
our current event specification fits
all scenarios of CSP projects
simulations/development

Keptn Control-Plane:
Keptn is built for Kubernetes and
consists of a couple of Keptn core
services that altogether form the
Keptn control-plane. The control-
plane is responsible for
orchestrating the life-cycle of an
application managed by Keptn.
Execution-plane service can
connect to the control-plane to
interact with Keptn via
CloudEvents sent through NATS.
The CloudEvents are currently
stored in a MongoDB that serves
as the datastore for all events that
are sent via Keptn and allows for
full traceability of life-cycle
events. The architecture of the
Keptn project can be found in the
Keptn documentation. Keptn's
architecture allows any tool to be
integrated into the application
life-cycle orchestration managed
by Keptn. These execution plane
services can run within the same
cluster as the Keptn control plane

Implementation
Level: Partially
Implemented
Estimated Delivery
Date: MS6 (M28)
Licence: Keptn is made
available under the
terms of the Apache
2.0 licence. Any use of
this Background by
any Participant is
subject to and must
conform to Apache 2.0
(https://github.com/k
eptn/keptn/blob/m
aster/LICENSE).

A major work has been done to
improve Keptn control plane: All
base services are now at v1.4.0.
We released a new service in
charge of handling the internal
status of the project using git: the
resource-service. This component
now substitutes the previous
configuration service. The new
service always requires a Git
upstream to be configured for a
Keptn project.
Even though the git approach is
working well for software projects
we need to consider that CSP and
HW simulations require larger
amounts of shared files and
resources. Typically in the industry
git is not considered sufficient for
these applications so we plan to
evaluate whether ulterior changes
to the service will be required.
Nevertheless, the new service
brings many advantages, such as
faster response times and the
possibility to upgrade Keptn

 Page 23

AIDOaRt Project nr. 101007350

or on different clusters, allowing
to orchestrate multi-cluster
deployments, tests, evaluations,
and operational tasks such as
remediation orchestration or
ChatOps.

without any downtime.
Furthermore, we introduced zero
downtime in the control plane to
reduce losses of events and
sequences’ information

Keptn Quality Gates:
A central component of Keptn are
quality gate evaluations based on
service-level objectives (SLOs).
Therefore, Keptn builds upon SRE
best practices such as service-level
indicators (SLIs) and allows to
declaratively define SLOs for
them. These SLOs define quality
criteria for the applications and
act as a gatekeeper during
software delivery before
promoting any application or
microservice from one
environment (e.g,. hardening) to
the next environment (e.g.,
production).

Implementation
Level: Partially
Implemented
Estimated Delivery
Date: MS6 (M28)
Licence: Keptn is made
available under the
terms of the Apache
2.0 licence. Any use of
this Background by
any Participant is
subject to and must
conform to Apache 2.0
(https://github.com/k
eptn/keptn/blob/m
aster/LICENCE).

Lighthouse, the component in
charge of quality gates, is now at
version 1.4.0.
Keptn Bridge (our UI) is now
leveraging a new rendering library
that offers more flexibility for
displaying the SLI breakdown.
The component has been made
more robust in case of malformed
SLI or SLO. Specific example
configurations for the CSP use case
are work in progress.

Table 7 Capabilities Implementation Status of the Keptn Solution

2.6 Solution - EMF Views (IMTA)

This solution implements the following Data Engineering Tool Set components:

● Data Representation

2.6.1 News and Updates

As mentioned in previous deliverable D2.2, the Viewpoint Builder and View Builder (i.e., the two EMF
Views core components) already provide a basic support for Verification and Validation (V&V) based
on metamodel conformance, and the associated VPDL language also comes with base syntactic
validation. At this stage, we did not yet have the need for more advanced V&V capabilities, but this
could be envisioned during the third and last year of the project if required in the context of a use case,
for instance, to facilitate the verification and/or validation of some CPS-related properties. Concerning
the scalability and efficiency of model view computation, navigation and querying, several identified
bugs have been fixed during this second year of the project. For example, we made the EMF Views
solution more reliable when considering UML/SysML models within the specified views, as required
notably in the CPS context of the VCE partner (cf. the corresponding subsection/table hereafter).
Moreover, as explained in the previous deliverable D2.2, the generated views are partially editable by
default (for basic attribute modification) but the currently provided view update capabilities remain

 Page 24

AIDOaRt Project nr. 101007350

limited. During this second year of the project, we started to work on integrating the use of Machine
Learning techniques with EMF Views in order to improve the semi-automated computation and/or
update of some elements of the views. We plan to achieve more complete and publishable results
during the third and last year of the project (cf. the corresponding subsection/table hereafter). This
could be useful in practice in a CPS model-based engineering context, for example, to recommend
eventually missing inter-data model relations that the system engineers have not or cannot foresee.

2.6.2 Capabilities Implementation Status

Capability Name &
Description

Implementation
Status

Comments / Release notes

Model Viewpoint
and View
computation:
Be able to
compute a given
view in a scalable
way, based on a
previously
specified
viewpoint and a
corresponding set
of metamodels
and models.

Implementation
Level: Partially
Implemented
Estimated Delivery
Date: MS6 (M28)
Licence: EPL 2.0 /
GPL 3.0

As introduced earlier, this tool capability is made
available in the current version of EMF Views.

Updates have been performed (as some bugs have
been detected on given view operations) in order to
better support the building of viewpoints and views
over particular types of models (e.g., UML/SysML
ones).

For the last phase of the project, we envision
extending/refining EMF Views and the associated
VPDL language with some AI-related support (cf. the
next section/table)

Model Viewpoint
and View
navigation and
query:
Be able to
efficiently navigate
and query an
already computed
view.

Implementation
Level: Partially
Implemented
Estimated Delivery
Date: MS5 (M24)
Licence: EPL 2.0 /
GPL 3.0

As introduced earlier, this tool capability is made
available in the current version of EMF Views.

Updates have been performed (as some bugs have
been detected on given view operations) in order to
better support the use of viewpoints and views over
particular types of models (e.g., UML/SysML ones).

For the last phase of the project, we envision
extending/refining EMF Views and the associated
VPDL language with some AI-related support (cf. the
next section/table)

Table 8 Capabilities Implementation Status of the EMF Views Solution

2.6.3 Future Capabilities Implementation Roadmap

Capability
Name &

Description

Implementation
Status

Roadmap and Planning

 Page 25

AIDOaRt Project nr. 101007350

Model
Viewpoint and
View update:
Be able to
dynamically
and efficiently
update an
already
computed view.

Implementation
Level: Not
Implemented
Estimated
Delivery Date:
MS7 (M32)
Licence: EPL 2.0 /
GPL 3.0

As introduced earlier, this tool capability is not yet
available in the current version of EMF Views.

The work started on integrating the use of Machine
Learning techniques with EMF Views in order to improve
the semi-automated computation and/or update of some
elements of the views. This work will be completed and
hopefully published during the third and last year of the
project.

Table 9 Future Capabilities Implementation Roadmap of the EMF Views Solution

2.7 Solution - a2k-runman (ITI)

This solution implements the following Data Engineering Tool Set components:

● Data Collection

● Data Management

2.7.1 News and Updates

During the 4’th Hackathon we mainly concentrated on the interchange and management of data
between the partners in the smart port use case. We defined and implemented the following data
handling services:

Importation of Modelling Data: To analyse and simulate the smart port platform, we need to define a
model for the architecture of the smart port platform. This architecture is a very large, distributed,
heterogeneous, cyber-physical system consisting of hundreds of IoT devices, and dozens of processing
devices consisting of various gateways, intermediate fog processors, and centralised cloud servers.
Initially, this proved problematic as A2K only has a graphical interface for model editing and so the
definition of the platform became tedious and error-prone. We solved this by developing a new import
service which can import model components for basic text-based spreadsheets. This considerably
simplified data exchange between the partners. An example of such a spreadsheet is presented in
Figure 6.

 Page 26

AIDOaRt Project nr. 101007350

Figure 6 Spreadsheet Showing Definition of Smart Port Hardware Architecture

Importation of Application Architecture and Message Protocols: Similarly, we have defined data
interchange spreadsheets to enable the definition of the software applications, parameters, and
communications protocols running on the various processors on the smart port architecture. This
allows us to represent the flow of messages and software activities within the system. An example is
shown in Figure 7.

 Page 27

AIDOaRt Project nr. 101007350

Figure 7 Example Sequence Diagram of Smart Port Processing

Definition of Smart Port Activities: We are also interested in simulating the day-to-day activities of the
smart port. To this end, we need to know the expected arrival times of ships, the use of loading cranes
and vehicles, and so forth. These are used in the A2K simulator to generate simulated scenarios and to
analyse the expected system performance under different conditions. Again, we have defined some
spreadsheet templates to implement this data exchange. An example of such a sheet is shown in Figure
8.

Figure 8 Specification of Port Activities

 Page 28

AIDOaRt Project nr. 101007350

2.7.2 Capabilities Implementation Status

Capability Name &
Description

Implementation
Status

Comments / Release notes

a2k/tunning:
Automatic criticality level /
operational mode change
management based on real-
time data collection and
analysis using adaptive
learning algorithms.

Implementation
Level: Partially
Implemented
Estimated Delivery
Date: MS7 (M36)
Licence: Proprietary
ITI

Currently under development. The
a2k/tuning component will connect with
the a2k/detection component to adjust the
CPU clock frequency according to the
predicted CPU load. The goal is to
minimise power consumption in a dynamic
fashion.

a2k/detection:
To monitor the operation of
a cyber-physical system in
real-time to provide warnings
and advice when critical
situations are observed or
predicted.

Implementation
Level: Partially
Implemented
Estimated Delivery
Date: MS7 (M36)
Licence: Proprietary
ITI

The a2k/detection component is currently
under development and evaluation. This
component will be used to model and
predict expected CPU loads. The prediction
model is trained and learned using the
simulation facilities provided by the
a2k/scheduling service of the a2k-modev
component.)

Table 10 Capabilities Implementation Status of the a2k-runman Solution

2.7.3 Future Capabilities Implementation Roadmap

Capability Name &
Description

Implementation
Status

Roadmap and Planning

a2k/tunning:
Automatic criticality level /
operational mode change
management based on
real-time data collection
and analysis using adaptive
learning algorithms

Implementation
Level: Partially
Implemented
Estimated Delivery
Date: MS7 (M36)
Licence: Proprietary
ITI

This component adjusts the processor
frequency considering the predicted
workload demands. We use a real-time
simulator and a prediction method based on
AI to do this. Currently, we are evaluating
different CPU frequency control algorithms
and how to interface these with the workload
prediction methods described below.

a2k/detection:
To monitor the operation of
a cyber-physical system in
real-time t45o provide
warnings and advice when
critical situations are
observed or predicted.

Implementation
Level: Partially
Implemented
Estimated Delivery
Date: MS7 (M36)
Licence: Proprietary
ITI

We have already developed a simulator
platform to test and evaluate a range of
different algorithms for predicting the future
CPU workload in the smart port use case. We
are now investigating a range of different
prediction methods. In the very near future,
we will link these with the a2k/tuning
component mentioned above.

Table 11 Future Capabilities Implementation Roadmap of the a2k-runman Solution

 Page 29

AIDOaRt Project nr. 101007350

2.8 Solution - ConvHandler (ROTECH)

This solution implements the following Data Engineering Tool Set components:

● Data Management

2.8.1 News and Updates

The ConvHandler is a Python module whose aim is to filter the data which will go as input to the
Onboard Bridger (described in section 3.9). The data filtering is performed using the Python library
Pandas. The first step is to read the input file, provided in .xlsx format, and look for empty
measurements and/or outliers, which will then be replaced with a placeholder value.

2.8.2 Capabilities Implementation Status

Capability Name & Description Implementation
Status

Comments / Release notes

Data Converter:
This component will elaborate
raw data received by various
services in order to transform it
into exploitable data for end-user
purposes.

Implementation
Level: Not
Implemented
Estimated Delivery
Date: MS5 (M24)
Licence: Licence-free

All the capabilities are fully
implemented and we are now
integrating the module with the
Bridger platform in order to handle
large amounts of data

Table 12 Capabilities Implementation Status of the ConvHandler Solution

2.9 Solution - Bridger (ROTECH)

This solution implements the following Data Engineering Tool Set components:

● Data Management

2.9.1 News and Updates

The Bridger is a software platform divided into two parts: Onboard Bridger and Remote Bridger. Its
aim is to manage filtered data taken as input from the ConvHandler and reorganise it to be stored
inside a relational database. Both have been developed in C++ and can be built on Linux systems via
Makefile.

In order to communicate correctly with each other, both parts of the platform need an MQTT
connection, where the Onboard is the publisher and the Remote is the subscriber.

The Bridger Onboard published on a range of different topics, each one serving a specific purpose:

 Page 30

AIDOaRt Project nr. 101007350

“command”: is used to request the exit of a session, when needed for debugging or redeployment
purposes;

“open”: is used to indicate the start of the transmission of a new file;

“payload”: this topic is used to publish the content of the current file;

“close”: this topic is used to signal the end of the current file.

The Bridger Onboard takes as input a stream of data and then encrypts it using an AES-based
encryption scheme. It then performs an open-close transfer to publish the data for the Remote Bridger
with the aforementioned topics.

The Bridger Remote connects to the MQTT by subscribing to the topics "command", "open",
"payload", and "close", with QoS (Quality of Service) 2, which means it will receive each message
exactly once. This guarantees that the Remote Bridger will be able to reconstruct the original message
without missing or repeated pieces. When a message is published on these topics by the Onboard
Bridger, it is received by the Remote platform and decrypted via the decryption function of the
encryption scheme. It is then serialised in different objects which map the tables inside the database.

The database is a PostgreSQL, and the connection to the Remote platform has been performed via
libpqxx, which is the official C++ client API for PostgreSQL.

The Bridger solution is almost completely developed, the next and final step will be the connection
with the database PostgreSQL and related functions to store the data.

Moreover, preliminary tests have highlighted the necessity to optimise the transfer process for large
amounts of data.

2.9.2 Capabilities Implementation Status

Capability Name & Description Implementation
Status

Comments / Release notes

Services Interface:
This solution will be designed
to interface different services
of the framework via secured
communication APIs.

Implementation
Level: Not
Implemented
Estimated Delivery
Date: MS5 (M24)
License: License-
free

The communication protocol and the
encryption capabilities are fully
developed. The next step is the
optimization of the transfer process for
large amounts of data

Table 13 Capabilities Implementation Status of the Bridger Solution

2.10 Solution - AsyncAPI Toolkit (UOC)

This solution implements the following Data Engineering Tool Set components:

● Data Collection

 Page 31

AIDOaRt Project nr. 101007350

● Data Representation

2.10.1 News and Updates

The definition and modelling of QoS conditions for Asynchronous services, which is a capability that
extends the OpenAPI specification with conditions over QoS metrics to generate the appropriate
monitoring rules to check them, has been successfully implemented.

2.10.2 Future Capabilities Implementation Roadmap

Capability Name & Description Implementation Status Roadmap and Planning
Monitoring of QoS for Asynchronous
services:
Automatically generates the monitoring
infrastructure in order to monitor and
assess the QoS for asynchronous services.

Implementation Level:
Not Implemented
Estimated Delivery
Date: MS7 (M32)
License: Eclipse Public
License 2.0

This feature is planned to
be implemented by MS7
(M32)

Table 14 Future Capabilities Implementation Roadmap of the AsyncAPI Toolkit Solution

 Page 32

AIDOaRt Project nr. 101007350

3 Mapping Solutions to AIDOaRt Data Engineering Tool
Set Components

In this section, we present the list of solution components realising the functional specification of the
Data Engineering Tool Set components. This mapping has been defined by the Solutions Providers
based on the potential of their proposed solutions in fulfilling the description, specification, and
functional interfaces of each component of the AIDOaRt Framework Architecture.

3.1 Mapping to Data Collection

In this section, we present the list of solution components realizing the "Data Collection" component
of the Data Engineering Tool Set. Each solution name is followed by the partner acronym between
parentheses. The full partners’ names can be found in the Partners Acronyms table in the preamble of
this document.

Solution Name Rationale
ESDE (ACO) ESDE can be understood as a simulation and (virtual platform) VP-based

means to produce and collect data from different layers (application
software, OS, driver, HW platform) of a complete embedded system model.

Position
Monitoring for
Industrial
Environment
(ACO)

Monitoring solutions intrinsically require data collection from different
nodes or subsystems at different abstraction levels. These data need to be
collected with the proper tools and techniques, parameters related to the
messages size, communication protocols, data throughput, time
constraints….

Kolga (AND) Kólga can be used to get trace information from CI/CD pipelines and
store that in an external storage provider for later analysis. This type of
feature can be used to analyze how fast CI/CD pipelines run, what type
of impact code has on the pipelines and to make adjustments based on
sub-tasks inside CI jobs.

devmate (AST) Devmate could contribute to this component through its "Code Parser"
component. Devmate supports parsing code and models in different
formats.

HIB_logAnalyzer
(HIB)

HIB_logAnalyzer collects Data in order to get valuable information from the
logs of the application (e.g., system logs, user generated input and any other
relevant data from which application intelligence can be generated using AI.

a2k-runman (ITI) The component consumes incoming streams of system and device
performance and execution status monitoring data.

AsyncAPI Toolkit
(UOC)

AsyncAPI toolkit will provide the capability to monitor the QoS of
Asynchronous services specified in AsyncAPI.

Table 15 Solutions Mapping to the "Data Collection" Component

Solution
Name

Rationale

 Page 33

AIDOaRt Project nr. 101007350

ESDE
(ACO)

ACORDE is working to enable the generation of traces from the executable models
produced in ESDE. It includes both, system-level models, and platform dependent
models relying on virtual platform (VP) models. The traces produced are time series
data, synchronised under a global time base. These simulation data will be used to
assess at design time the suitability of a specific algorithm and/or platform
configuration.

Table 16 Solutions Mapping to the "IF-DESIGN-TIME-DATA-COLLECTION" Interface

Solution Name Rationale
Position Monitoring
for Industrial
Environment (ACO)

The industrial positioning monitoring solution provided by ACORDE
provides application and health data in real time. It uses suitable
aggregators and agents to feed in run-time the data to different types of
data bases.

Kolga (AND) Kólga can be used to get trace information from CI/CD pipelines and
store that in an external storage provider for later analysis. This type of
feature can be used to analyse how fast CI/CD pipelines run, what type
of impact code has on the pipelines and to make adjustments based on
sub-tasks inside CI jobs.

devmate (AST) devmate has capabilities to parse source code (structured text), load data
from its user interface, load saved artefacts of its internal model and load
data in form of its internal test model (with or without test data values)
through its interfaces.

HIB_logAnalyzer (HIB) logAnalyzer gets the data from logs in the system and the devices to
process it trough the text analytics and NLP pipelines.

a2k-runman (ITI) The a2k/detection service consumes system performance metrics and
sensor data streams at run-time. It uses the a2k/monitoring service to
collect performance data in real-time and applies anomaly detection
algorithms to this data.

AsyncAPI Toolkit
(UOC)

AsyncAPI facilitates the communication of collected runtime data via the
generation of the corresponding asynchronous connected platforms'
APIs.

Table 17 Solutions Mapping to the "IF-RUNTIME-DATA-COLLECTION" Interface

3.2 Mapping to Data Management

In this section, we present the list of solution components realizing the "Data Management"
component of the Data Engineering Tool Set. Each solution name is followed by the partner acronym
between parentheses. The full partners’ names can be found in the Partners Acronyms table in the
preamble of this document.

Solution Name Rationale
ESDE (ACO) ESDE enables gathering data from the different levels of the system model.

In addition, in AIDOaRt, ACORDE aims data management so that time series
from different layers of the system model and tracing is enabled. Data
filtering is another capability that is expected to be required and be
developed, depending on the number of sources and analysis

 Page 34

AIDOaRt Project nr. 101007350

performances, features like ability to downsampling on time series, or
dynamic selection of data are foreseen.

Position
Monitoring for
Industrial
Environment (ACO)

Data management is a key functionality for monitoring and control. Data
monitored needs to be properly filtered and categorized to develop real-
time or offline filtering and analysis capabilities.

devmate (AST) Devmate contributes to this component through its core functionality of
parsing code (structured text) and transforming it to an internal model.

Keptn (DT) Keptn Events in case accepted as a Standard can be considered an interface
between different tool, as supports IF-FILTERING-HARMONIZATION.

a2k-runman (ITI) The component maintains and manages past histories of performance data
for modelling and training. It also creates simulated data for training.

Bridger (ROTECH) Using this solution, different services will be connected via a secured
communication API which encrypts incoming data and converts it to a
compatible format.

ConvHandler
(ROTECH)

The solution is responsible of converting raw data to refined data relevant
to the end users' necessities.

Table 18 Solutions Mapping to the "Data Management" Component

Solution Name Rationale
ESDE (ACO) ESDE is extended to support separating traces associated to relevant

“probe points” on the different levels of the embedded system model.
Thus, each trace reflects a signal on time for each prove. Then, later
analysis phases can combine a selected set of traces. To enable a consistent
analysis, it is fundamental data harmonization, i.e., the time labeling of the
reported events under a consistent global model clock. Moreover, the
enabled traceability strongly relies on considering event-based (mostly
Boolean) signals. It is convenient in terms of size, and to facilitating the
applicability of more generic analysis methods.

Position Monitoring
for Industrial
Environment (ACO)

The industrial positioning solution of ACORDE, being able to compute on its
own a consistent time reference (based on GNSS technology), will be able
to label application data (position) and infrastructure status data
consistently on a common time basis for the deployed devices.

Keptn (DT) Keptn Events are an excellent means to support the interconnectivity of
different tools.

Table 19 Solutions Mapping to the "IF-FILTERING-HARMONIZATION" Interface

Solution
Name

Rationale

devmate
(AST)

devmate has capabilities for de-/serialization and transformation of data obtained
or used by its various services (parser, user interface modules, generator)

Bridger
(ROTECH)

The Bridger solution is divied in on-board platform, which organizes the collected
and filtered data and securely transmits it, and the remote platform which receives

 Page 35

AIDOaRt Project nr. 101007350

the data from the on-board and organizes it to be compatible with the structure of
the Database.
Table 20 Solutions Mapping to the "IF-DATA-TRANSFORMATION" Interface

Solution Name Rationale
a2k-runman
(ITI)

The a2k/detection service uses the a2k/monitoring service to collect run-time
performance data from several different sources and sensors. Various filters,
pre-processing, and data management tools are used before passing the
aggregated data to the a2k/detection service for anomaly detection.

ConvHandler
(ROTECH)

ConvHandler module provides data filtering and cleaning capabilities that will be
directly applied to a stream of data coming from sensors.

Table 21 Solutions Mapping to the "IF-DATA-FILTERING-AGGREGATION" Interface

3.3 Mapping to Data Representation

In this section, we present the list of solution components realizing the "Data Representation"
component of the Data Engineering Tool Set. Each solution name is followed by the partner acronym
between parentheses. The full partners’ names can be found in the partners’ acronyms table in the
preamble of this document.

Solution Name Rationale
EMF Views
(IMTA)

If the considered data is expressed as model(s), EMF Views can be used to
create various data representations as model views integrating data coming
from possibly different and heterogeneous data sets.

Modelio (SOFT) Modelio would contribute to this component with its existing core capabilities,
such as data modelling and metamodelling, model exchange (export / import),
model transformation, document generation, model update from edited
documentation, traceability, and model consistency checking.

AsyncAPI
Toolkit (UOC)

AsyncAPI toolkit embeds an AsyncAPI v2.0.0 Metamodel in order to support the
modelling of AsyncAPI specifications in any Eclipse UML-compatible modelling
tool.

TemporalEMF
(UOC)

TemporalEMF embeds a temporal metamodel profile to define models with
temporal capabilities in any Eclipse UML-compatible modelling tool.

WAPIml (UOC) WAPIml defines a Metamodel for OpenAPI in order to support the modelling of
RESTful services based on the OpenAPI specification

Table 22 Solutions Mapping to the "Data Representation" Component

Solution Name Rationale
EMF Views
(IMTA)

Model views specified with EMF Views, and interrelating several models
and/or metamodels together, can be considered for building a megamodel.

Modelio (SOFT) Modelio is an extentable Modeling tool supporting several modelling
standards as UML for example. Thus, it would support megamodeling by

 Page 36

AIDOaRt Project nr. 101007350

using a prexisting standard or customizing one.

TemporalEMF
(UOC)

TemporalEMF leverages the EMF framework to provide support for
representing data models.

AsyncAPI Toolkit
(UOC)

AsyncAPI is able to load and represent an EMF/UML model.

WAPIml (UOC) WAPIml leverages an UML2-compatible modeler to load and represent a data
model.

Table 23 Solutions Mapping to the "IF-DATA-MEGAMODEL" Interface

3.4 Updates from the previous deliverable

Here we include the differences w.r.t. D2.2, i.e., newly added mappings, updated rationales and
removed ones.

There are no new solution components realising the "Data Collection" component of the Data
Engineering Tool Set at this stage. The solution “TemporalEMF (UOC)” has been removed in this final
period, and the rationale for the mapping of the “ESDE (ACO)” solution to the "IF-DESIGN-TIME-DATA-
COLLECTION" interface has been slightly modified.

Regarding solutions realising the "Data Management" component of the Data Engineering Tool Set,
the mappings to "IF-FILTERING-HARMONIZATION" and "IF-DATA-FILTERING-AGGREGATION"
interfaces from Constellation (SOFT) have been removed, and the rational ESDE (ACO) updated.

Among the solution components realising the "Data Representation" component of the Data
Engineering Tool Set, a2k-modev (ITI) and a2k-runman (ITI) have been removed and the rationale for
Modelio (SOFT) has been updated.

 Page 37

AIDOaRt Project nr. 101007350

4 Mapping Use Case Requirements to AIDOaRt Data
Engineering Tool Set Components

This section presents an update of the mapping of the use case requirements and data requirements
to the Data Engineering Tool Set components. This mapping has been defined by the Case Study
Providers based on the potential of each component of the AIDOaRt Framework Architecture in
satisfying each of their use case requirements and data requirements.

For the sake of clarity, we present these mappings per component. For each component, we list the
correlated requirements in a separate section for each component, grouped in two tables. The first
table lists the related use case requirements, and the second table lists the related use case data
requirements.

Note that each requirement identifier is prefixed by the partner acronym. The full list of partners’
names can be found in the Partners Acronyms table in the preamble of this document.

4.1 Mapping to Data Collection

In this section, we present the mapping of the use case requirements and data requirements to the
"Data Collection" component of the Data Engineering Tool Set.

Requirement
ID

Requirement Description Rationale

VCE_R02 AI/ML method for auto-adjusting
model parameters w.r.t. similarity
of execution traces of a Digital Twin
with a CPS

Data engineering for data collection
component is expected to ensure the
gathering of run-time data required for the
fulfilment of the requirement.
VCE would use data collection to gather
the necessary data for analysis and
adjustment of a Digital twin.

VCE_R06 Integration of DevOps workflows
and continuous integration/
configuration of models and
corresponding technical solutions

Data engineering for data collection
component is expected to ensure
gathering of design time data is collected
correctly regarding the required formats.
VCE would use data collection to collect
necessary data when designing models
using DevOps workflows.

BT_R01 NLP contextual analysis of
requirements and match against
database of responses/solutions

The data collection component is expected
to ensure that requirements are
adequately collected and that integration
with third-party tools that contain data
works. Alstom would use the data
collection component to collect
requirements for training the AI/ML model

 Page 38

AIDOaRt Project nr. 101007350

and its uses in production.

BT_R02 ML aided control model
parameterization during propulsion
system testing

Alstom will use the Data Collection
Component to collect current, voltage, and
temperature data from sensors as time
series during the test.

AVL_SEC_R03 Train ANN on SUT topology
discovery using test observation

The data collection is expected to assure
an adequate format for delivering data for
training an ANN for building a system
topology model.

AVL_SEC_R02 Use an ANN to perform plausibility
checks on models

The data collection is expected to assure
an adequate format for delivering data for
training an ANN for model plausiblity
checking.

AVL_SEC_R06 Use AI (ML) methods to learn detect
abnormal behavior on a CAN

The data collection is expected to assure
an adequate format for delivering data for
training an ANN to learn a CAN's abnormal
behavior.

AVL_SEC_R05 Use AI (ML) methods to learn on the
normal behavior on a powertrain
CAN

The data collection is expected to assure
an adequate format for delivering data for
training an ANN to learn a CAN's normal
behavior.

W_R_3 Extract data from steps in DevOps
process.

AIDOaRt collects data of many different
types.

W_R_4 Log file storing, indexing, searching,
clustering and comparing

AIDOaRt collects data of many different
types.

HIB_R01 The AIDOaRt AI algorithms must be
able to analyze log files (text) from
the restaurant application.

Data Collection is necessary for the
analysis of Logs implied in this
requirement.

HIB_R02 The AIDOaRT solution will enable to
process requirements expressed in
natural language in Trello boards

Data Collection is necessary for the data in
Trello used in this functionality

HIB_R03 The AIDOaRT solution must be able
to analyze the continuous
integration process and detect
anomalies.

Data Collection is required on the assets to
be packaged in the new bundles.

HIB_R04 The AIDOaRT AI algorithms will
enable analyzing the success of
deploying a new version of the POS
application.

Data collection is essential for the update
process to be performed in TAMUS.

W_R_2 Quality monitoring and predictions
in devops process

For quality monitoring, and prediction,
data collection is needed.

AVL_SEC_R08 Use live connection to remotely
transfer CAN messages

Data collection via remote interface

AVL_SEC_R09 Use secure remote transfer
connection

Secure remote data collection

PRO_R07 Monitor the platform in real time to
reduce the downtime and the data

Uses DATA-COLLECTION to keep data from
platform and sensors.

 Page 39

AIDOaRt Project nr. 101007350

lost

PRO_R01 Use an Infrastructure as Code
Language able to deploy the
solution in different cloud providers
and using different architectures /
approaches (Containers & virtual
machines)

Uses DATA-COLLECTION to obtain data
from the infrastructure in the design time.

Table 24 Use Case Requirements Mapping to the "Data Collection" Component

Data
Requirement ID

Data Requirement Description Rationale

AVL_SEC_DR01 CAN data of a realistically behaving
vehicular power train to train a plausiblity
model ANN

The data collection is expected
to assure an adequate format
of the data for training an ANN
to check a model's plausibiltiy.

AVL_SEC_DR02 CAN data of a realistically behaving
vehicular power train to train an anomaly
detection ANN

The data collection is expected
to assure an adequate format
of the data for training an ANN
to for anomaly detection.

W_DR_02 To identify non-trivial indicators for quality
shortcomings, the test cases could be
parsed with NLP.

AIDOaRt collects data of many
different types.

W_DR_03 To identify non-trivial indicators for quality
shortcomings, the source code and recent
changes could be parsed.

AIDOaRt collects data of many
different types.

W_DR_05 To identify non-trivial indicators for quality
shortcomings, the test scripts could be
parsed.

AIDOaRt collects data of many
different types.

W_DR_07 To identify non-trivial indicators for quality
shortcomings, the logs from static code
analysis could be parsed.

AIDOaRt collects data of many
different types.

W_DR_08 To identify non-trivial indicators for quality
shortcomings, the compilation logs could be
parsed.

AIDOaRt collects data of many
different types.

W_DR_09 To identify anomalies or gradual
degradation in performance, the test
execution logs could be parsed

AIDOaRt collects data of many
different types.

W_DR_10 To identify anomalies or gradual
degradation in performance, as well as
functional issues and error messages, the
device communication logs should be
parsed.

AIDOaRt collects data of many
different types.

W_DR_11 To extract information on non-functional
characteristics (from e.g. free, top, etc.), the

AIDOaRt collects data of many
different types.

 Page 40

AIDOaRt Project nr. 101007350

device communication logs should be
processed.

W_DR_12 To identify the current configuration of a
device being tested, the device
communication logs could be processed.

AIDOaRt collects data of many
different types.

W_DR_13 To identify pass/fail/etc-history of test
executions, the test results database should
be processed.

AIDOaRt collects data of many
different types.

W_DR_14 To identify human-identified risks and risk
levels, the risk management data in
spreadsheets could be processed.

AIDOaRt collects data of many
different types.

W_DR_15 To identify the topology of a test system,
which may be useful in a bigger analysis, the
test system topology descriptions could be
used.

AIDOaRt collects data of many
different types.

W_DR_16 To identify the topology of test cases, which
may be useful in a bigger analysis, the test
case topology descriptions could be used.

AIDOaRt collects data of many
different types.

TEK_Data_02 Monitoring data of test execution and
processing of results.

Data collection from various
sources.

PRO_IoT IoT devices periodically send data collected
by the different sensors they contain. This
data is sent via JSON messages.
Regarding trucks and cranes, they send one
message per second with information about
the vehicle's operation/status.
The important thing about this data is to
verify that it is sent and that the messages
are not lost. The content of the messages is
not relevant to the purpose of the use case.

Real time data collected from
different IoT Nodes

PRO_log All the resources of the platform including
the IoT devices installed in the vehicles will
provide information about resource usage
(Memory, CPU, Disk).

Real time data collected from
different IoT sensors.

PRO_Monitoring The monitoring platform with collaboration
with some AI algorithms will detect
problems in the platform. Every time that a
problem is found an alarm/notification will
be generated.

Real time data collected from
different IoT devices

PRO_IaC This file will contain the description of the
platform to be deployed in an IaC language
"Terraform".

Infrastructure as Code of the
Use case

Table 25 Use Case Data Requirements Mapping to the "Data Collection" Component

Requirement
ID

Requirement Description Rationale

 Page 41

AIDOaRt Project nr. 101007350

VCE_R06 Integration of DevOps workflows
and continuous integration/
configuration of models and
corresponding technical solutions

The interface can enable the collection of
data from system operations that is required
for complete DevOps workflow.

HIB_R02 The AIDOaRT solution will enable
to process requirements
expressed in natural language in
Trello boards

The requirements analysis solution
proposed collects data from Design-time
(the raw text from the requirements) to use
for analysis and generation of relevant
metadata (requirement topic and owner).

BT_R01 NLP contextual analysis of
requirements and match against
database of responses/solutions

The interface will enable the
selection/decomposition of the
requirements for training the ML models.

BT_R02 ML aided control model
parameterization during
propulsion system testing

The interface will enable the
selection/decomposition of the motor
operation data for training the ML models.

AVL_SEC_R02 Use an ANN to perform plausibility
checks on models

The data collection is expected to assure an
adequate format for delivering data for
training an ANN for model plausiblity
checking.

AVL_SEC_R03 Train ANN on SUT topology
discovery using test observation

The data collection is expected to assure an
adequate format for delivering data for
training an ANN for building a system
topology model.

PRO_R01 Use an Infrastructure as Code
Language able to deploy the
solution in different cloud
providers and using different
architectures / approaches (
Containers & virtual machines)

Uses IF-DESIGN-TIME-DATA-COLLECTION to
obtain data from infrastructure needed to
deploy the SPMP platform to use for
analysis.

HIB_R03 The AIDOaRT solution must be
able to analyze the continuous
integration process and detect
anomalies.

Data is collected at design time to ensure
that the continuous integration process can
be documented and analyzed. Data
captured includes the different version
changes and applied updates to each
component of the TAMUS system.

HIB_R04 The AIDOaRT AI algorithms will
enable analyzing the success of
deploying a new version of the
POS application.

Data is collected at design time to ensure
that updates are applied correctly on a given
TAMUS system. This includes the outputs of
the update scripts.

Table 26 Use Case Requirements Mapping to the "IF-DESIGN-TIME-DATA-COLLECTION" Interface

Data
Requirement ID

Data Requirement Description Rationale

PRO_IaC This file will contain the
description of the platform to be

Uses IF-DESIGN-TIME-DATA-COLLECTION
to collect data from the infrastructure

 Page 42

AIDOaRt Project nr. 101007350

deployed in an IaC language
"Terraform".

needed to deploy the SPMP platform to
use for analysis.

AVL_SEC_DR01 CAN data of a realistically
behaving vehicular power train to
train a plausiblity model ANN

The data collection is expected to assure
an adequate format of the data for
training an ANN to check a model's
plausibiltiy.

Table 27 Use Case Data Requirements Mapping to the "IF-DESIGN-TIME-DATA-COLLECTION" Interface

Requirement
ID

Requirement Description Rationale

VCE_R02 AI/ML method for auto-adjusting
model parameters w.r.t. similarity of
execution traces of a Digital Twin
with a CPS

The interface can enable the correct
implementation of the digital twin.

VCE_R06 Integration of DevOps workflows and
continuous integration/
configuration of models and
corresponding technical solutions

The interface can enable the collection of
data from system operations that is
required for a complete DevOps
workflow.

HIB_R01 The AIDOaRt AI algorithms must be
able to analyze log files (text) from
the restaurant application.

The HIB_logAnalyzer collects data from
the runtime to drive the NLP analysis of
the system logs.

W_R_2 Quality monitoring and predictions in
devops process

By collecting data at runtime, e.g.
resource usage of systems involved in
nightly testing, one could monitor or
predict quality shortcomings.

W_R_3 Extract data from steps in DevOps
process.

For W_R_3, data collection is central.

W_R_4 Log file storing, indexing, searching,
clustering and comparing

For W_R_4, collecting log files is central.

AVL_SEC_R05 Use AI (ML) methods to learn on the
normal behavior on a powertrain
CAN

The data collection is expected to assure
an adequate format for delivering data
for training an ANN to learn a CAN's
normal behavior.

AVL_SEC_R06 Use AI (ML) methods to learn detect
abnormal behavior on a CAN

The data collection is expected to assure
an adequate format for delivering data
for training an ANN to learn a CAN's
abnormal behavior.

AVL_SEC_R08 Use live connection to remotely
transfer CAN messages

Data collection via remote interface

AVL_SEC_R09 Use secure remote transfer
connection

Secure remote data collection

PRO_R07 Monitor the platform in real time to
reduce the downtime and the data
lost

This RUNTIME-DATA-COLLECTION
interface would offer our use case the
capability to obtain data from the
platform.

Table 28 Use Case Requirements Mapping to the "IF-RUNTIME-DATA-COLLECTION" Interface

 Page 43

AIDOaRt Project nr. 101007350

Data
Requirement ID

Data Requirement Description Rationale

PRO_log All the resources of the platform including
the IoT devices installed in the vehicles will
provide information about resource usage
(Memory, CPU, Disk).

Uses IF-RUNTIME-DATA-
COLLECTION to collect data
coming from IoT devices linked
to the SPMP platform.

PRO_IoT IoT devices periodically send data collected
by the different sensors they contain. This
data is sent via JSON messages.
Regarding trucks and cranes, they send one
message per second with information about
the vehicle's operation/status.
The important thing about this data is to
verify that it is sent and that the messages
are not lost. The content of the messages is
not relevant to the purpose of the use case.

Uses IF-RUNTIME-DATA-
COLLECTION to collect data
coming from IoT devices linked
to the SPMP platform.

AVL_SEC_DR02 CAN data of a realistically behaving vehicular
power train to train an anomaly detection
ANN

The data collection is expected
to assure an adequate format
of the data for training an ANN
to for anomaly detection.

W_DR_02 To identify non-trivial indicators for quality
shortcomings, the test cases could be parsed
with NLP.

Data needs to be collected.

W_DR_03 To identify non-trivial indicators for quality
shortcomings, the source code and recent
changes could be parsed.

Data needs to be collected.

W_DR_05 To identify non-trivial indicators for quality
shortcomings, the test scripts could be
parsed.

Data needs to be collected.

W_DR_07 To identify non-trivial indicators for quality
shortcomings, the logs from static code
analysis could be parsed.

Data needs to be collected.

W_DR_08 To identify non-trivial indicators for quality
shortcomings, the compilation logs could be
parsed.

Data needs to be collected.

W_DR_09 To identify anomalies or gradual
degradation in performance, the test
execution logs could be parsed

Data needs to be collected.

W_DR_10 To identify anomalies or gradual
degradation in performance, as well as
functional issues and error messages, the
device communication logs should be
parsed.

Data needs to be collected.

W_DR_11 To extract information on non-functional
characteristics (from e.g. free, top, etc.), the

Data needs to be collected.

 Page 44

AIDOaRt Project nr. 101007350

device communication logs should be
processed.

W_DR_12 To identify the current configuration of a
device being tested, the device
communication logs could be processed.

Data needs to be collected.

W_DR_13 To identify pass/fail/etc-history of test
executions, the test results database should
be processed.

Data needs to be collected.

W_DR_15 To identify the topology of a test system,
which may be useful in a bigger analysis, the
test system topology descriptions could be
used.

Data needs to be collected.

W_DR_16 To identify the topology of test cases, which
may be useful in a bigger analysis, the test
case topology descriptions could be used.

Data needs to be collected.

W_DR_14 To identify human-identified risks and risk
levels, the risk management data in
spreadsheets could be processed.

Data needs to be collected.

PRO_Monitoring The monitoring platform with collaboration
with some AI algorithms will detect
problems in the platform. Every time that a
problem is found an alarm/notification will
be generated.

This RUNTIME-DATA-
COLLECTION interface would
offer our use case the
capability to obtain data from
the platform.

TEK_Data_02 Monitoring data of test execution and
processing of results.

Run-time data collection
through is needed during the
verification phase of the
development.

Table 29 Use Case Data Requirements Mapping to the "IF-RUNTIME-DATA-COLLECTION" Interface

4.2 Mapping to Data Management

In this section, we present the mapping of the use case requirements and data requirements to the
"Data Management" component of the Data Engineering Tool Set.

Requirement
ID

Requirement Description Rationale

VCE_R02 AI/ML method for auto-adjusting
model parameters w.r.t.
similarity of execution traces of a
Digital Twin with a CPS

Data engineering for data management
component is expected to ensure data
gathered is filtered, transformed, and
represented accordingly to the demands of
the AI/ML component(s) used for auto
adjustment.
VCE would use data management to ensure
the data captured and required for the AI/ML
component(s) is correctly represented and
harmonized.

 Page 45

AIDOaRt Project nr. 101007350

BT_R02 ML aided control model
parameterization during
propulsion system testing

Alstom will use the Data Management
Component to clean, resample, and normalize
the collected data from several sensors.

AVL_SEC_R02 Use an ANN to perform
plausibility checks on models

The Data Management Component should be
able to normalize data for ANN training.

AVL_SEC_R04 Use formal model checking
methods to derive test cases out
of a system model

The Data Management Component should be
able to normalize data to use a learned model
for model checking.

W_R_3 Extract data from steps in
DevOps process.

Data collected is stored and managed.

W_R_4 Log file storing, indexing,
searching, clustering and
comparing

Data collected is stored and managed.

CSY_R01 Find a representation of PO
(hypothesis + goal) that can
permit ML

Table 30 Use Case Requirements Mapping to the "Data Management" Component

Data
Requirement ID

Data Requirement Description Rationale

W_DR_02 To identify non-trivial indicators for quality
shortcomings, the test cases could be parsed
with NLP.

Data collected is stored
and managed.

W_DR_03 To identify non-trivial indicators for quality
shortcomings, the source code and recent
changes could be parsed.

Data collected is stored
and managed.

W_DR_05 To identify non-trivial indicators for quality
shortcomings, the test scripts could be parsed.

Data collected is stored
and managed.

W_DR_07 To identify non-trivial indicators for quality
shortcomings, the logs from static code analysis
could be parsed.

Data collected is stored
and managed.

W_DR_08 To identify non-trivial indicators for quality
shortcomings, the compilation logs could be
parsed.

Data collected is stored
and managed.

W_DR_09 To identify anomalies or gradual degradation in
performance, the test execution logs could be
parsed

Data collected is stored
and managed.

W_DR_10 To identify anomalies or gradual degradation in
performance, as well as functional issues and
error messages, the device communication logs
should be parsed.

Data collected is stored
and managed.

W_DR_11 To extract information on non-functional
characteristics (from e.g. free, top, etc.), the
device communication logs should be
processed.

Data collected is stored
and managed.

 Page 46

AIDOaRt Project nr. 101007350

W_DR_12 To identify the current configuration of a device
being tested, the device communication logs
could be processed.

Data collected is stored
and managed.

W_DR_13 To identify pass/fail/etc.-history of test
executions, the test results database should be
processed.

Data collected is stored
and managed.

W_DR_14 To identify human-identified risks and risk
levels, the risk management data in
spreadsheets could be processed.

Data collected is stored
and managed.

W_DR_15 To identify the topology of a test system, which
may be useful in a bigger analysis, the test
system topology descriptions could be used.

Data collected is stored
and managed.

W_DR_16 To identify the topology of test cases, which
may be useful in a bigger analysis, the test case
topology descriptions could be used.

Data collected is stored
and managed.

TEK_Data_01 Monitoring data of test execution and
processing of results.

The cleaning, analysis, and
management functions are
needed by the use case in
different stages of the
development.

TEK_Data_02 Monitoring data of test execution and
processing of results.

The cleaning, analysis, and
management functions are
needed by the use case in
different stages of the
development.

TEK_Data_03 Monitoring data for AI models for diagnostics
and prognostics.

The cleaning, analysis, and
management functions are
needed by the use case in
different stages of the
development.

PRO_Monitoring The monitoring platform with collaboration with
some AI algorithms will detect problems in the
platform. Every time that a problem is found an
alarm/notification will be generated.

Uses all data management
interfaces to handle the
data from devices.
Uses DATA-COLLECTION to
keep data from platform.

PRO_IoT IoT devices periodically send data collected by
the different sensors they contain. This data is
sent via JSON messages.
Regarding trucks and cranes, they send one
message per second with information about the
vehicle's operation/status.
The important thing about this data is to verify
that it is sent and that the messages are not
lost. The content of the messages is not relevant
to the purpose of the use case.

Uses DATA-COLLECTION to
keep data from sensors.

Table 31 Use Case Data Requirements Mapping to the "Data Management" Component

 Page 47

AIDOaRt Project nr. 101007350

Requirement
ID

Requirement Description Rationale

W_R_4 Log file storing, indexing,
searching, clustering and
comparing

Log files may come in different formats, a
harmonizing approach to fill gaps in formats (e.g.,
adding a uniform timestamp), could be needed.

CSY_R01 Find a representation of PO
(hypothesis + goal) that can
permit ML

This functional interface would help us to manage
the anonymisation aspects of our proof database.
Anonymisation modifies the proof models such as
locally each proof remains coherent, with variable
names and labels equally modified along the
different propositions. Globally, the same variable
are not transformed equally, meaning that a set of
hypothesis concerning a special aspect of a project,
i.e. the time variable, can be present in several
proofs but transformed differently in each proofs
due to anonymisation. Harmonization could help
by representing relations in proofs in a way that
anonymisation would have a reduced impact.

BT_R02 ML aided control model
parameterization during
propulsion system testing

The interface will enable the alignment of the
motor operation data for training ML models.

AVL_SEC_R02 Use an ANN to perform
plausibility checks on
models

The Data Management Component should be able
to normalize data for ANN training.

AVL_SEC_R04 Use formal model checking
methods to derive test
cases out of a system model

The Data Management Component should be able
to normalize data to use a learned model for
model checking.

Table 32 Use Case Requirements Mapping to the "IF-FILTERING-HARMONIZATION" Interface

Data
Requirement ID

Data Requirement Description Rationale

PRO_Monitoring The monitoring platform with collaboration
with some AI algorithms will detect problems
in the platform. Every time that a problem is
found an alarm/notification will be generated.

This functional interface
would help us to normalize
data coming in different
formats from different
sensors. So that later they
can be used in a simple way
when we work with them.

PRO_IoT IoT devices periodically send data collected by
the different sensors they contain. This data is
sent via JSON messages.
Regarding trucks and cranes, they send one
message per second with information about
the vehicle's operation/status.
The important thing about this data is to verify
that it is sent and that the messages are not
lost. The content of the messages is not
relevant to the purpose of the use case.

This functional interface
would help us to normalize
data coming in different
sensors that will have
several different formats.

Table 33 Use Case Data Requirements Mapping to the "IF-FILTERING-HARMONIZATION" Interface

 Page 48

AIDOaRt Project nr. 101007350

Requirement
ID

Requirement Description Rationale

VCE_R02 AI/ML method for auto-
adjusting model parameters
w.r.t. similarity of execution
traces of a Digital Twin with
a CPS

The interface can enable the process of reading
and understanding real sensor data to the
adjustment of a corresponding model.

W_R_4 Log file storing, indexing,
searching, clustering and
comparing

Data extraction could involve transforming data,
say storing a log file in a different format, or
adding various kinds of meta data to it.

W_R_3 Extract data from steps in
DevOps process.

Data extraction could involve transforming data,
say storing a log file in a different format, or
adding various kinds of meta data to it.

CSY_R01 Find a representation of PO
(hypothesis + goal) that can
permit ML

This functional interface would help us to discover
meaningful relation inside our hypothesis models.
The Hypothesis, as structured forms naturally
carries a strong semantic. This semantic has to be
present for machine learning to be efficient.

Table 34 Use Case Requirements Mapping to the "IF-DATA-TRANSFORMATION" Interface

Data
Requirement ID

Data Requirement Description Rationale

PRO_Monitoring The monitoring platform with
collaboration with some AI algorithms
will detect problems in the platform.
Every time that a problem is found an
alarm/notification will be generated.

This functional interface would help
us to adapt the different types of
data to the desired structure in
order to work with them correctly.

PRO_IoT IoT devices periodically send data
collected by the different sensors they
contain. This data is sent via JSON
messages.
Regarding trucks and cranes, they send
one message per second with
information about the vehicle's
operation/status.
The important thing about this data is
to verify that it is sent and that the
messages are not lost. The content of
the messages is not relevant to the
purpose of the use case.

This functional interface would help
us to adapt the different types of
data coming from different IoT
sensors.

TEK_Data_01 Monitoring data of test execution and
processing of results.

The interface supports data
transformation capabilities to
transform data collected in the DATA
COLLECTION component to the
internal representation defined in
the DATA REPRESENTATION

 Page 49

AIDOaRt Project nr. 101007350

component and satisfies the
TEK_DATA_01 requirement related
to the Monitoring data of test
execution and processing of results.
Bridger (ROTECH)

TEK_Data_02 Monitoring data of test execution and
processing of results.

The interface supports data
transformation capabilities to
transform data collected in the DATA
COLLECTION component to the
internal representation defined in
the DATA REPRESENTATION
component and satisfies the
TEK_DATA_02 requirement related
to the Monitoring data of test
execution and processing of results.
Bridger (ROTECH)

W_DR_02 To identify non-trivial indicators for
quality shortcomings, the test cases
could be parsed with NLP.

Some data might be transformed,
e.g., by changing into a common
JSON format.

W_DR_03 To identify non-trivial indicators for
quality shortcomings, the source code
and recent changes could be parsed.

Some data might be transformed,
e.g., by changing into a common
JSON format.

W_DR_05 To identify non-trivial indicators for
quality shortcomings, the test scripts
could be parsed.

Some data might be transformed,
e.g., by changing into a common
JSON format.

W_DR_07 To identify non-trivial indicators for
quality shortcomings, the logs from
static code analysis could be parsed.

Some data might be transformed,
e.g., by changing into a common
JSON format.

W_DR_08 To identify non-trivial indicators for
quality shortcomings, the compilation
logs could be parsed.

Some data might be transformed,
e.g., by changing into a common
JSON format.

W_DR_09 To identify anomalies or gradual
degradation in performance, the test
execution logs could be parsed

Some data might be transformed,
e.g., by changing into a common
JSON format.

W_DR_10 To identify anomalies or gradual
degradation in performance, as well as
functional issues and error messages,
the device communication logs should
be parsed.

Some data might be transformed,
e.g., by changing into a common
JSON format.

W_DR_11 To extract information on non-
functional characteristics (from e.g.
free, top, etc.), the device
communication logs should be
processed.

Some data might be transformed,
e.g., by changing into a common
JSON format.

W_DR_12 To identify the current configuration of
a device being tested, the device
communication logs could be
processed.

Some data might be transformed,
e.g., by changing into a common
JSON format.

 Page 50

AIDOaRt Project nr. 101007350

W_DR_13 To identify pass/fail/etc.-history of test
executions, the test results database
should be processed.

Some data might be transformed,
e.g., by changing into a common
JSON format.

W_DR_14 To identify human-identified risks and
risk levels, the risk management data
in spreadsheets could be processed.

Some data might be transformed,
e.g., by changing into a common
JSON format.

W_DR_15 To identify the topology of a test
system, which may be useful in a
bigger analysis, the test system
topology descriptions could be used.

Some data might be transformed,
e.g., by changing into a common
JSON format.

W_DR_16 To identify the topology of test cases,
which may be useful in a bigger
analysis, the test case topology
descriptions could be used.

Some data might be transformed,
e.g., by changing into a common
JSON format.

Table 35 Use Case Data Requirements Mapping to the "IF-DATA-TRANSFORMATION" Interface

Data
Requirement ID

Data Requirement Description Rationale

PRO_Monitoring The monitoring platform with
collaboration with some AI algorithms
will detect problems in the platform.
Every time that a problem is found an
alarm/notification will be generated.

This functional interface would help
us to adapt to select the different
types of data to be able to perform
actions on a specific set of data.

PRO_IoT IoT devices periodically send data
collected by the different sensors they
contain. This data is sent via JSON
messages.
Regarding trucks and cranes, they send
one message per second with
information about the vehicle's
operation/status.
The important thing about this data is
to verify that it is sent and that the
messages are not lost. The content of
the messages is not relevant to the
purpose of the use case.

This functional interface would help
us to adapt to select the different
types of data to be able to perform
actions on a specific set of sensors.

TEK_Data_03 Monitoring data for AI models for
diagnostics and prognostics.

The interface supports the
capabilities to filter and aggregate
data and satisfies the TEK_DATA_03
requirement related to the
Monitoring data for AI models for
diagnostics and prognostics.
ConvHandler (ROTECH)

W_DR_02 To identify non-trivial indicators for
quality shortcomings, the test cases
could be parsed with NLP.

Some data should be filtered, e.g.,
one may not want all data, but only
the subset with failures.

 Page 51

AIDOaRt Project nr. 101007350

W_DR_03 To identify non-trivial indicators for
quality shortcomings, the source code
and recent changes could be parsed.

Some data should be filtered, e.g.,
one may not want all data, but only
the subset with failures.

W_DR_05 To identify non-trivial indicators for
quality shortcomings, the test scripts
could be parsed.

Some data should be filtered, e.g.,
one may not want all data, but only
the subset with failures.

W_DR_07 To identify non-trivial indicators for
quality shortcomings, the logs from
static code analysis could be parsed.

Some data should be filtered, e.g.,
one may not want all data, but only
the subset with failures.

W_DR_08 To identify non-trivial indicators for
quality shortcomings, the compilation
logs could be parsed.

Some data should be filtered, e.g.,
one may not want all data, but only
the subset with failures.

W_DR_09 To identify anomalies or gradual
degradation in performance, the test
execution logs could be parsed

Some data should be filtered, e.g.,
one may not want all data, but only
the subset with failures.

W_DR_10 To identify anomalies or gradual
degradation in performance, as well as
functional issues and error messages,
the device communication logs should
be parsed.

Some data should be filtered, e.g.,
one may not want all data, but only
the subset with failures.

W_DR_11 To extract information on non-
functional characteristics (from e.g.
free, top, etc.), the device
communication logs should be
processed.

Some data should be filtered, e.g.,
one may not want all data, but only
the subset with failures.

W_DR_12 To identify the current configuration of
a device being tested, the device
communication logs could be
processed.

Some data should be filtered, e.g.,
one may not want all data, but only
the subset with failures.

W_DR_14 To identify human-identified risks and
risk levels, the risk management data
in spreadsheets could be processed.

Some data should be filtered, e.g.,
one may not want all data, but only
the subset with failures.

W_DR_15 To identify the topology of a test
system, which may be useful in a
bigger analysis, the test system
topology descriptions could be used.

Some data should be filtered, e.g.,
one may not want all data, but only
the subset with failures.

W_DR_16 To identify the topology of test cases,
which may be useful in a bigger
analysis, the test case topology
descriptions could be used.

Some data should be filtered, e.g.,
one may not want all data, but only
the subset with failures.

Table 36 Use Case Data Requirements Mapping to the "IF-DATA-FILTERING-AGGREGATION" Interface

4.3 Mapping to Data Representation

In this section, we present the mapping of the use case requirements and data requirements to the
"Data Representation" component of the Data Engineering Tool Set.

 Page 52

AIDOaRt Project nr. 101007350

Requirement
ID

Requirement Description Rationale

BT_R02 ML aided control model
parameterization during
propulsion system testing

Alstom will use the Data Representation
Component to clean, resample, and
normalize the collected data from several
sensors.

AVL_SEC_R01 Use automata learning and ML
techniques to derive SUT models

AVL will use Data representation facilitate
(manual) verification the correctness of the
learned model.

AVL_SEC_R03 Train ANN on SUT topology
discovery using test observation

AVL will use Data representation verify the
topology modelling.

AVL_SEC_R04 Use formal model checking
methods to derive test cases out
of a system model

AVL will use Data representation to model
proof obligations into models.

W_R_3 Extract data from steps in
DevOps process.

Some of the collected data is annotated or
indexed to simplify further work, such as
indexing for search, etc.

W_R_4 Log file storing, indexing,
searching, clustering and
comparing

Some of the collected data is annotated or
indexed to simplify further work, such as
indexing for search, etc.

Table 37 Use Case Requirements Mapping to the "Data Representation" Component

Requirement
ID

Requirement Description Rationale

AVL_SEC_R01 Use automata learning and ML
techniques to derive SUT models

AVL will use Data representation facilitate
(manual) verification the correctness of
the learned model.

AVL_SEC_R03 Train ANN on SUT topology
discovery using test observation

AVL will use Data representation verify
the topology modelling.

AVL_SEC_R04 Use formal model checking methods
to derive test cases out of a system
model

AVL will use Data representation to model
proof obligations into models.

W_R_3 Extract data from steps in DevOps
process.

Extracted data from the DevOps process
should be modelled, managed and stored.

W_R_4 Log file storing, indexing, searching,
clustering and comparing

Extracted logs from the DevOps process
should be modelled, managed and stored.

BT_R02 ML aided control model
parameterization during propulsion
system testing

This interface will be used to verify the
correctness of the trained models.

Table 38 Use Case Requirements Mapping to the "IF-DATA-MEGAMODEL" Interface

 Page 53

AIDOaRt Project nr. 101007350

4.4 Concluding remark

A mapping of the use case requirements and data requirements to the Data Engineering Tool Set
components has been presented in this section. This effort has been made by Case Study Providers
with the expectation that it may help future users of the components of the AIDOaRt Framework
Architecture to identify their usefulness and eventually satisfy requirements of potentially related new
applications, use cases or data requirements.

The use case functional and data requirements exhibit the need to collect and handle both static
design-time and dynamic run-time types of data.

 Page 54

AIDOaRt Project nr. 101007350

5 Applications of AIDOaRt Data Engineering Tool Set
Solutions in Use Cases

This section presents some examples of the way solutions that encompass the various use cases data
models are applied in some of the challenges appointed by Use Case leaders.

The cases shown here are limited to solutions related to the Data Engineering Tool Set. They
correspond to challenges that were identified, discussed and faced mainly (but not only) during the
hackathons and plenary meetings realised along the project.

5.1 Operating Life Monitoring - TEK, ROTECH

Ro Technology is collaborating with TEKNE in the third scenario, TEK_UCS_03, called Operating Life
Monitoring. The collaboration is focused on the data management performed after the on-board
sensing, such as cleaning, transmission, storage and retrieval, considering the requirements related to
the security of data, characteristics of the transmission link, as well as the appropriate choice of the
database management system with regard to the needs of AI algorithms.

Figure 9 TEK_UCS_3 architecture

In this context, ROTECH is providing 2 solutions to cover the aforementioned needs: the ConvHandler
and the Bridger, both implementing the Data Management component of the AIDOaRt Data
Engineering Tool Set.

Figure 9 represents the high-level architecture of the TEK scenario. Both solutions are used after the
Measured data is produced. In particular, the ConvHandler is installed in the Onboard computing
platform and performs the Preprocessing operations on the raw data received.

The Bridger is composed of two instances:

● one installed on the Onboard computing platform, called Bridger Onboard. It encrypts the
data and publishes it on a MQTT Broker;

 Page 55

AIDOaRt Project nr. 101007350

● one installed in the Remote Computing and Data Storage platform, called Bridger Remote. It
decrypts the data and stores it in a Database.

Both the Bridger Onboard and the ConvHandler are strictly related since the data produced by the
latter is then encrypted and sent to the MQTT by the former.

Figure 10 Data flow

Figure 10 shows the interaction between the ConvHandler and the Bridger and the data management
in the process.

So far ROTECH has conducted lab tests using an .xlsx file provided by TEK as a data set. All the
components are working as expected and the next step is the optimisation of the communication
between the two Bridger instances. In fact, considering the large amount of data produced by the
system, an improvement of the data exchange process is needed. We are now taking into
consideration the usage of a compression algorithm in order to drastically increase the transfer speed
and improve the overall performance of the system.

5.2 Application in Anomaly Detection in Cyber-Physical Systems – Location
Optimization Challenge - PRO, ACORDE, ITI, UOC

The Smart Port Monitoring Platform (SPMP) is an IoT platform responsible for collecting and storing
data from many different sensors. Currently, the quality of the data received is long breached, not only
because of problems in collecting the data (frequency of sending and quality of the data received), but
also because of problems in the hardware infrastructure over which the system runs.

 Page 56

AIDOaRt Project nr. 101007350

The lack of accuracy in the data affects the analysis performed on the platform, and, consequently, the
decision-making based on this analysis. The challenge consists of finding problems in the data and
ensuring that the devices linked to the platform behave as agreed. Moreover, ensuring that the
platform has the necessary resources to ensure its proper functioning is another of the subjects to be
solved. We have made significant progress in the following areas:

● anomaly detection techniques;

● Simulation techniques to determine the needs of the platform in different scenarios; and

● service quality of IoT sensors and platforms.

The ultimate goal is to enable the possibility to actuate, to ensure at least a smooth monitoring
capability, and as a consequence, smooth port operation. In this sense, the use case reflects a
distributed CPS example, relying on a heterogeneous and dispersed set of sensors and with a specific
type of actuation to ensure proper monitoring.
The challenge continues to be divided into 3 sub-challenges:

● Data Quality IoT focuses on ensuring that the information received is correct. For this purpose,
the Universitat Oberta Catalunya (UOC) previously provided a mechanism to ensure that the
data received is syntactically correct, and now has developed a meta-model towards checking
that it is also timely delivered.

● Infrastructure Performance & Availability are addressed in collaboration with the Instituto
Tecnológico de Informática (ITI), guaranteeing that the infrastructure and elements are
available and sufficient to process the data.

● Location Optimization, in which ACORDE works on improving the positioning of the different
elements, improving accuracy and resilience, exploiting the distributed architecture, and
better integrating the data in an advanced monitoring platform.

This challenge is related to the following AIDOaRt components:
● Data Collection
● Data Management
● Data Representation

5.2.1 Data Quality IoT

Cyber-physical systems (CPSs) are sometimes built on top of message-driven architectures, where
asynchronous communication within the system is key for its scalability and performance. In
distributed architectures like CPSs ones, there must be a shared understanding of the structure,
semantics and latency of the messages that are published and consumed by their different
components.

Previously, we adopted a model-driven paradigm to efficiently design and develop a message-driven
architecture. The proposal relies on the AsyncAPI Specification to formalise and (semi)automate the
design and implementation of such architecture by using the AsyncAPI Toolkit developed at UOC. We
created a data model for the messages and the architecture using the UML profile for Industry 4.0 that

 Page 57

AIDOaRt Project nr. 101007350

the AsyncAPI toolkit provides. As a result of the model-to-text transformations that the tool provides,
more than 9,000 lines of API code were automatically generated. With this approach, the Java code
ensures that messages are syntactically correct (data integrity).

We have progressed in this challenge by specifying a meta-model to define the quality of service
requirements for asynchronous messaging, towards automatically deriving and instantiating a
dashboard to measure the compliance of the conditions established in an SLA at run time. This meta-
model allowed us then to define a set of service-level objectives and their related QoS metrics. It has
been designed as an extension of the AsyncAPI specification and it tailors the ISO/IEC 25010 quality
model and the key concepts of WS-Agreement adapted for asynchronous messaging. The code listing
in Figure 11 illustrates an excerpt of the meta-model grammar:

Figure 11 Excerpt of the meta-model grammar

Figure 12 depicts an excerpt of the JSON code for the definition of SLOs and metrics:

 Page 58

AIDOaRt Project nr. 101007350

Figure 12 Excerpts of the JSON code for the definition of SLOs and metrics

The next steps include the MDE code for transforming the service level objectives defined in JSON
format to a running dashboard. When finalised, we will be able to continuously evaluate the health of
the system by measuring the number of anomalies automatically detected (either as a result of a data
structure violation or because of latency issues) and contrast that figure against the total occurrences.

 Page 59

AIDOaRt Project nr. 101007350

5.2.2 Infrastructure Performance Resizing of Resources Based on Current Workload - Power

Aware Scheduling

Cyber-physical systems often operate in dynamic and unpredictable environments where power
availability may vary. Power awareness enables active power management techniques that allow CPS
components to adjust their power consumption based on workload demands or power availability,
effectively balancing performance and energy usage.
A power awareness algorithm is part of the a2k/tuning solution. This solution uses machine learning
based algorithms to obtain more efficient power consumption, allowing applications to run safely with
lower costs.
This solution component provides instances of the Data Management and Data Collection services of
the AIDOaRt architecture.
This algorithm adjusts the processor frequency by considering the predicted workload demands. We
use a real-time simulator (part of ITI’s A2K software suite) and a prediction method based on AI to do
that. Using the simulator, we can obtain the execution, release, start and finishing times of a set of
tasks that run in a processor. We then use this data to create a prediction model that enables tuning
the processor frequency to optimise the power, whilst keeping the time constraints of the real-time
system, that is, ensuring that all the software tasks meet their deadlines. Figure 13 shows a schematic
of this method, where fCPU is the processor frequency, ri, si and fi are the release, start and finishing
times, Ci is the execution time and di is the deadline of task i, which is represented with τi.

Figure 13 a) Block diagram of the power aware solution; The AI module containing the prediction methods

which will invoke, if necessary, CPU frequency changes considering the computational tasks (τi) parameters.
b) Layout of the time task parameters

To develop the prediction methods, which will be integrated into the AI module, we have implemented
the following steps:

● Seven regression models have been evaluated and compared to determine which model
can estimate different parameters with the best performance. The main idea is to assess
the optimal workload with minor error. With this purpose, the following regression models
have been adjusted and compared: Linear Regression, Ridge Regression, Lasso Regression,
Elastic Net, Support Vector Regression, Random Forest Regressor, and XGBoost Regressor.
The XGBoost model showed the best performance and was selected for subsequent
analysis.

● The selected regression model has been adapted for time series prediction. This way, as
shown in Figure 14, it could also be used to predict the system’s behaviour (a2k/detection
service) and invoke system mode changes before anomalies related to workload arise
(a2k/tuning service). The main idea is to apply the regression model using sliding windows

 Page 60

AIDOaRt Project nr. 101007350

that move forward through time. To do this, each observation will be composed of the
information from n time instants (window size: t-n, … t-2, t-1), which will be used to predict
the next instant (t+1).

● The previous model has been modified so that it is possible to predict several time instants
(t+1, t+2, t+3 ...), see Figure 15. This change has been studied in two ways: (1) direct
multioutput. The multiple-output regression problem is divided into multiple single-
output regression problems. This strategy consists of fitting one regressor per target; (2)
chained multioutput. The multiple-output regression problem is divided into dependent
single-output regression problems. In this strategy, each model makes a prediction in the
order specified by the chain using all the available features provided to the model plus the
predictions of models that are earlier in the chain.

All the algorithms have been developed using simulated data created by ITI. The necessary pipeline
has also been developed to prepare the different models (regression, simple prediction, multiple
predictions) for their deployment.

Figure 14 AI module containing the prediction methods

 Page 61

AIDOaRt Project nr. 101007350

Figure 15 Example of transformation of the input data matrix using a sliding window of size n=3 (3 time-

points) to predict the following four-time instants. X is the input data where each row of the matrix
corresponds to the data of a time point (t), and y is the

5.2.3 Positioning Monitoring for Industrial Environment

The data monitoring and infrastructure designed and implemented as reported in Section 3.2 enables
the collection of different types of monitored data via several interfaces. In the Vasteras May 11th
demo, the Ethernet interface support was demonstrated, and current work is to support a low-power
interface. In the same demo session, the capability to manage those data via a local database at the
edge (i.e., at the gateway) and transfer/synchronisation with the cloud. Moreover, the capability to
analyse that data, i.e. to perform anomalies analysis at the gateway was shown. This is of great utility,
as it makes it possible, for instance, to decide the synchronisation of edge data with the cloud, i.e.
sensing the raw data as is to the cloud, in case of anomalous operation detection. However, if it is
assessed that these port elements are operating in normal conditions, the sending/synchronisation of
data at lower rates, or mere sending of statistical metadata can be decided, with the derived
communication, storage and energy savings

More specifically, the port use case addressed enables several types of data collection on the crane
environment. This has an immediate utility in the detection of anomalies in their operation and their
optimization. A specific focus is put on positioning data, for which specific novel sensing infrastructure
is being designed, which will allow the exploitation of the potential of continuum computing
architecture.
The following figure (Figure 16) provides a zoom into the integrated data model regarding positioning
and its related quality.

Figure 16 Detail of the data model of cranes position dada and its quality

https://docs.google.com/document/d/1ITk_2-aPqrEKiVq_peFjQfObxDMWoxMd/edit#bookmark=id.8ofy76bq5vw4
https://docs.google.com/document/d/1ITk_2-aPqrEKiVq_peFjQfObxDMWoxMd/edit#bookmark=id.8ofy76bq5vw4

 Page 62

AIDOaRt Project nr. 101007350

This model reflects in much an abstraction of a Modbus interface compatible with other positioning
IoTs already used by Prodevelop in the past. This abstraction is useful in facilitating the compatibility
with previously installed infrastructure, the analysis tools and the presentation tools. As illustrated in
the following figure (Figure 17), the abstraction fulfils different integration scenarios.

Figure 17 Data model on the positioning & quality data supports several integration scenarios

In the scenario shown in the upper part of Figure 14, the PIoT is connected to a pre-existing industrial
Gateway and provides the information through a RS485 wired interface and a Modbus protocol. This
is the scheme posed for the first physical piloting agreed upon with Prodevelop. Under this scheme,
Prodevelop can access the information on the Modbus format, which facilitates the integration of
novel PIoT data on their pre-existing edge infrastructures, relying on commercial SoA industrial
gateways.

At the same time, the data model is sufficiently abstract to serve the edge solution developed by
ACORDE in AIDOaRt, represented at the bottom part of Figure 14, which includes a novel gateway
infrastructure. On that solution, ACORDE provides the PIoT and the Gateway platform, enabling low-
power, long-range wireless connection of PIoT. Moreover, in this solution, the monitoring centre, ie.
Prodevelop, can integrate the data directly by accessing the edge database. Notice that, in this
scenario, there is no need for Modbus protocol intervention, while the defined data model ensures a
base homogeneity and format on the information available, always convenient, for the analysis and
data representation tooling.

With regard to the data model of the configuration of the Generic Anomalies Analysis (GAA) presented
in Figure 2 of Section 3.2, it has several applications. First, that model is expected to be a basis for
discussing, generating and adapting to a broad (eventually standard) interface for anomaly analysis
tools. Moreover, it shall serve as a schema which enables automated validation of the configuration
syntax, consistency and completeness.

https://docs.google.com/document/d/1ITk_2-aPqrEKiVq_peFjQfObxDMWoxMd/edit#bookmark=id.5p0s8e6ztfvv
https://docs.google.com/document/d/1ITk_2-aPqrEKiVq_peFjQfObxDMWoxMd/edit#bookmark=id.5p0s8e6ztfvv

 Page 63

AIDOaRt Project nr. 101007350

5.3 Concluding remark

Data related labour reported here are just an insight of the potential that can be expressed once all
solutions become fully integrated in use cases.

Additional collaborations as well as the potential exploitation of the mega-modelling capabilities may
encompass horizontal integration of data related experiences, meaning the reutilization of experiences
like for example those with the formalisation of the data models, on one use case, or the concrete
application of solution to use cases, into another one. These situations, once discovered, will be
reported in the next deliverables of the integration work package (WP5)

 Page 64

AIDOaRt Project nr. 101007350

6 AIDOaRt Data Mega-Model

The main objective of the Data Representation component is to provide a common, agreed-upon,
global data representation to serve as the foundation for MDE-based activities throughout the
AIDOaRt framework. To achieve this, a mega-model has been defined to allow providing such global
data representation so that it can be accessed and reused in all stages of the AIDOaRt process. The
mega-model has also been built with the aim to take advantage of current state-of-the-art MDE
techniques and scalable model storage technologies.

The AIDOaRt mega-model unifies the different UC data models by normalising their notation and
linking those concepts that are (partially) synonymous across the various concrete data models. It
yields generic representations for those elements that are shared across these UC data models, thus
providing an agnostic overview of the most relevant data elements present in the AIDOaRt framework
and its development process.

In this section, we present the whole process and design of the AIDOaRt mega-model. In subsection
6.1, we introduce the goals and expected benefits of having a mega-model for the AIDOaRt framework,
and its structure. Afterwards, we outline the approach we followed to design the mega-model in
subsection 6.2. As a result, in subsection 6.3, we describe the UC partners’ specific data models in their
current version, now following the UML notation; and in subsection 6.4, we present the different areas
of the mega-model and their corresponding generic diagrams. We finalise with a call to action for
partners to use the mega-model to identify common interests or areas of expertise and collaborate.

6.1 Definition, Goals and Expected Benefits of the AIDOaRt Mega-Model

The mega-model is an aggregation of all the UC domains that unifies their notation and connects
semantically similar elements. It also provides a generic, UC-agnostic representation of concepts that
are managed throughout the AIDOaRt development process. Figure 18 depicts the two-layers structure
of the mega-model. The “blue” layer illustrates the different UC data models that now follow a
standard notation; whereas the “orange” layer portrays the abstract elements that generalise UC-
specific shared concepts and links them.

 Page 65

AIDOaRt Project nr. 101007350

Figure 18 The two layers of the AIDOaRt mega-model

The benefits from this approach are many-fold.

First, by adopting a common formal language for all UC data models, namely the UML notation, we
standardise the way data and their structure are designed. Having a lingua franca allows users to clearly
appreciate what is represented, speed up the interpretation of the particularities of each domain, and
therefore have a much better and common understanding. A standard notation fosters
communication and collaboration between the users, facilitating better knowledge sharing. We
adopted UML for data representation because of its ability to perform formal verification of data
models and the wide support from solution providers (such as Modelio, which is the centrepiece of
our MBRE method [AIDOART-D1.4]).

Second, our proposed mega-model can be used to foster synergies between different UCs from various
application domains. In fact, the links between generic elements and concrete elements are aimed not
only to state the generalisation relationship from specific UC data entities to their resulting AIDOaRt
abstract entity but to be used as bridges between different UC domains. Those connections unveil
synergies between UC domains, thus identifying potential collaborations. Given a generic element that
abstracts two concrete concepts from different UC domains, stakeholders from one UC domain could
establish a collaboration with stakeholders from the other connected domain. In this collaboration,
they can share their expertise and lessons learned, and apply similar strategies, tools or techniques to
common problems. Furthermore, this approach would also allow Solution providers to better
understand the potential of their tools, in terms of transversal application with respect to different
domains. Similarly, a UC partner could review another UC partner’s data model and identify data
elements that could be incorporated into their originally provided data model and enrich it.

The generic layer of the AIDOaRt data model bestows users a bird’s eye view of the main concepts that
are managed across the different use cases. We expect it to be extremely useful for new users of the
framework, especially external users outside the AIDOaRt consortium and facilitate their onboarding.

 Page 66

AIDOaRt Project nr. 101007350

A newcomer could easily comprehend the generic concepts and their relationships, and, if interested,
navigate to a specific domain using the links of the generic elements to the concrete ones.

6.2 Approach to Design the AIDOaRt Mega-Model

In this section, we describe the collaborative activities performed in T2.2 to finally create the first
version of the AIDOaRt mega-model. This process is illustrated in Figure 19, where the activities are
positioned according to the deliverables of WP2. Blue activities correspond to the concrete UC data
models and were mainly completed by UC partners. Orange activities were performed to create the
generic layer of the mega-model and were executed by the T2.2 Leader with the support of
stakeholders from all consortium members.

Figure 19 The process to create the AIDOaRt mega-model

6.2.1 Collect UC Data Models

In deliverable D2.1 (Data Collection and Representation - initial version), UC partners provided their
data models, in order to represent both: (a) the domains of their use cases; and (b) the information
that conforms to data requirements in regard to particular data types or format. Some of these models
were described with diagrams, but, in some cases, the information that was required to be represented
was clear and structured, whereas, in other examples, the particular fields of information required
were still under progress.

Moreover, each UC partner adopted their particular notation, resulting in a variety of visual
representations that might hinder a user of the framework from easily understanding the different
domains, and grasping the information that is managed across use cases. Figure 20 illustrates the
diversity of notations used in the different UC data models. Additionally, we can see that some
notations used in the diagrams were not formal, thus impeding the application of an MDE-based
method.

 Page 67

AIDOaRt Project nr. 101007350

Figure 20 Some of the UC data models initially collected, and their diverse notations

Another issue that comes from this early collection of data models in such a variety of formats is that
some partners may have similarities in their domains and actions, but in this arrangement, it was
difficult to connect the dots between their respective data elements.

We addressed all these issues in the subsequent activities.

6.2.2 Analyse UC Data Models

Taking into account the UC data models initially provided, we conducted an activity of identification
and generalisation of synonyms from UC data models. We performed an analysis of the diverse
domains to first group the UC data models into different categories with a correspondence to AIDOaRt
phases, and second identify the potential synonyms. The first version of this grouping was reported in
D2.2 (Data Collection and Representation - interim version) but has been continuously carried out until
this final deliverable. It helped to identify the generic elements and to structure the generic layer of
the mega-model into sub-diagrams, one for each respective AIDOaRt phase.

6.2.3 Normalise UC Data Models

In order to have a common notation and its many benefits, partners were requested to adopt UML for
their data models and to publish their diagrams in Modelio. To complete this activity, we relied on the
proficiency of the stakeholders for their respective domains. Regarding the UML modelling skills, when
required, we scheduled workshops to assist those partners that had little or no experience in
identifying data elements and representing data models; or, in other cases, the partners themselves

 Page 68

AIDOaRt Project nr. 101007350

leveraged the modelling task to the expertise of their solution providers. The resulting assets are
reported in this deliverable.

6.2.4 Create the Generic Layer

In the last phase of the task T2.2 Data Representation of WP2, we constructed the generic layer and
structured it according to the AIDOaRt development process phases. We defined the generic entities
and connected them with the UC-concrete ones. The initial draft of this connecting layer and its
artefacts was presented to, refined and validated by UC partners, resulting in the first version of the
AIDOaRt mega-model that is presented in this document.

6.3 Use Case Data Models

6.3.1 ABI

In this section, we present the data model of ABI.

This is the UML class diagram of the Use Case Requirements. Each instance of Use Case Requirement
is identified by an ID and a description, as well as by two enumeration types, the RequirementType, to
specify if the requirement is functional or non-functional, and the RequirementPriority, to specify the
priority of the requirement (from Highest to Low). A Use Case Requirement can refine a Customer
Requirement and an AIDOaRt Generic Requirement. Also, a Use Case Requirement can be derived from
another Use Case Requirement. Each instance of Customer Requirement is identified by an ID and a
description. The set of custom requirements is further refined to define the Requirement Matrix.

Figure 21 ABI UC Requirements Data Model

Customer Requirement

High-level requirement from the customer.

 Page 69

AIDOaRt Project nr. 101007350

The Customer Requirement is expressed as specifications in natural language and generally comes
through simple Word files or PowerPoint presentations, but they could also come as verbal requests
during a meeting.

Generic Requirement

AIDOaRt Generic Requirement

Use Case Requirement

Use Case Requirement, defined starting from the customer requirements keeping in account also any
applicable standards and technical assumptions. They are expressed as specifications in natural
language.

6.3.2 AVL

In this section, we present the data models of AVL.

6.3.2.1 ODP Data Model

This data model captures the most important entities, associated properties and interrelations for the
ODP use case. Specifically, the entities capture the data objects relevant for product verification or
validation in automotive development projects.

 Page 70

AIDOaRt Project nr. 101007350

Figure 22 ODP Data Model

Development Project

Project covering the development of a product in the automotive domain. The product can be a car or
a component of a car, e.g., its battery.

Testing Phase

In the automotive domain, the testing of the product under development is structured into several
phases. E.g., at the beginning of the development project, testing will be in a simulation phase, while
towards the end of the development project, testing will be done in a hardware phase when hardware
prototypes of the product under development are available.

Testing phases can be both sequential and simultaneous. For example, testing the performance of a
car is done in Phase 1a using simulations and Phase 1b using the hardware powertrain on a hardware
test bed. Simultaneously to phases 1x, phases 2x might deal with testing another aspect of the car,
e.g., its energy consumption.

In each phase, individual test runs are executed.

Key Performance Indicator

 Page 71

AIDOaRt Project nr. 101007350

A property of the product that is of relevance to some stakeholder (customer, legislation etc.). Usually,
a numerical value (scalar or n-dim matrix) with some physical meaning (and hence a unit). Each KPI is
associated with a target KPI.

Example: The product "battery electric vehicle" has the KPI "driving range" (scalar, unit kilometres).

Development Project Test History

At any given point in time in the development project (between the start and end date), certain test
runs (simulations, physical tests with hardware, or mixed tests using simulation and hardware
combined) have already been executed. These already executed test runs are collected in the
development project test history.

Test Run

The aim of the test run is to determine the values of a certain KPI or set of KPIs for the current
development state of the product under development, i.e., the actual KPIs. These actual KPIs are
compared to target KPIs in order to assess whether the current state of development can meet the
target KPI (aka satisfies the corresponding requirements).

A test run comprises either executing a simulation model or testing a hardware part (or a combination
of simulation and hardware).

A test run has a maturity associated with it. Maturity is a numerical measure of confidence, similar to
an uncertainty of a physical measurement value. At the beginning of the development project, when
much of the product under development is still unclear, the maturity will be low. At the end of the
development project, when understanding of the product under development is detailed and precise,
maturity is high.

Simulation Model

Representation of some functional/behavioural aspect of the product under development, created in
a specific modelling tool (Simulink, Amesim etc.). Usually, changes in the course of the development
project, hence has a version associated with it.

Utilised by a test run to compute some KPI of the product under development. Takes the product
design (at a specific point in time, encoded by parameters) as input and produces actual KPI as output.

Example: A simulation model of the electrical performance of the battery uses the number of battery
cells (as specified in the development status at a specific point in time) as input and determines
charging time as output.

Hardware Part

Hardware prototype of the product under development (or a component of the product under
development).

A test run uses the hardware part to determine an actual KPI.

Several (increasingly mature) hardware prototypes are usually created in the course of the
development project, hence a version.

 Page 72

AIDOaRt Project nr. 101007350

Example: Hardware prototype of a battery.

Product under Development

The product under development itself, i.e., the thing that is created in the course of the development
project.

The product under development must meet certain target KPIs.

The product under development (its design) is encoded by parameters.

The development status of the product under development at a specific point in time will lead to actual
KPIs specific to that development status.

Target KPI

The target value of some KPI, as defined in a product requirement. At the end of the development
project, each KPI must satisfy the target KPI.

Actual KPI

A test run uses the development status (of the product under development, available at the time of
executing the test run) to determine the KPI value for this specific development status. This KPI value
is specific to a development status and is called the actual KPI.

Actual KPI is associated with one target KPI.

Actual KPI usually changes over time due to design changes of the product under development.

Parameter

A characteristic of the product under development that encodes the design of the product. Usually, a
numerical value (scalar or n-dim matrix) with some physical meaning (and hence a unit). The value of
a parameter at a specific point in time in the development project is determined using the
development status of the product under development at this point in time.

The value of the parameter usually changes over time due to design changes of the product under
development.

Example: Mass of the vehicle in kilograms, computed from the mechanical design of the vehicle
(geometry, material selection) at a specific point in time.

Test run uses parameter values to determine actual KPIs for the state of development as encoded by
the parameters.

6.3.2.2 SEC Data Model

The overall idea is to facilitate anomaly detection on a high-security Powertrain CAN network (PT CAN)
inside a vehicle and to use a Fuzz testing unit (CAN Fuzzer). Then we generate arbitrary traffic on a low-
security Infotainment CAN network (Info CAN) and evaluate if we can observe anomalies on the PT
CAN. The goal of the process is to validate and verify the correct function of a security gateway device

 Page 73

AIDOaRt Project nr. 101007350

(GW) that is connecting those two CAN networks. Having such a GW connecting two (or more) CAN
networks in a vehicle is a very common setting in the automotive industry. The GW should let needed
information pass and block all other information, especially to prevent unauthorised access from the
Info CAN to the PT CAN. The PT CAN anomaly detection should work as a test oracle if fuzzed input on
the Info CAN will have a potentially undesired impact on the PT CAN.

Figure 23 SEC Data Model

Gateway Scenario

Control class that would start the fuzzer and run a test.

PowerTrain CAN Data

This is CAN data collected on the Powertrain CAN network (PT CAN) of a vehicle. This kind of data is
recorded previously with a set of normal behaviour during a training phase and later analysed during
the testing phase for anomalies using machine learning (while the fuzzer generates data on the Info
CAN).

Infotainment CAN Data

This is CAN data collected on the Infotainment CAN network (Info CAN) of a vehicle. The purpose of
this data is to get initial seed data for the CAN Fuzzer, which should generate Info CAN data itself for
the actual test.

CAN Data

This is a collection of CAN or CAN-FD Frames (see respective class), representing actual traffic running
over a CAN bus [ISO-11898-1] inside a vehicle. The data is collected on two different CAN buses inside
a vehicle: a low-security Infotainment CAN network (Info CAN) and a high-security Powertrain CAN
network (PT CAN). On the Info CAN, a CAN Fuzzer also generates data.

CAN Packet

 Page 74

AIDOaRt Project nr. 101007350

This class represents a CAN or CAN-FD Frame running over a CAN bus, according to the ISO 11898-1
[ISO-11898-1] specification. The data fields of the class represent the parts of a CAN frame according
to the specification.

Anomaly

An anomaly is CAN data that could occur on the PT CAN and that is different from previously recorded.
If CAN data represents an anomaly or not is determined via a machine learning algorithm.

6.3.2.3 TCV/MBT Data Model

The provided TCV/MBT data model is used in the AVL toolchain to test and validate ADAS/AD
functionality. It consists of three logical units: (1) data generator of the test scenarios, (2) data
generated by the scenario execution and (3) actionable data generated by the next test scenario.

Figure 24 TCV/MBT Data Model

ADASScenario

Defines a database of logical scenarios that are used for testing ADAS/AD functionality. When triggered
provides a logical scenario for testing.

LogicalADASScenario

 Page 75

AIDOaRt Project nr. 101007350

Logical scenario parameters, taxonomy and ontology of the logical scenario under test. When
triggered, it provides an instance of the logical scenario for testing.

KPI

A collection of data generated after calculating the test-relevant KPI.

ADASScenarioTestInstance

A scenario under test that is defined by the test parameters, and concretised by the test values and
ranges, as well as the corresponding ontology.

ADASTestEnvironment

Collection of the data defining the simulation environment and data generated in an interaction with
the test function.

TestData

A selected collection of the Environment data relevant for test evaluation.

ADASTestCriteria

A collection of data that defines a new test action based on the provided KPI values.

6.3.2.4 RDE Data Model

This class model describes the relationship between data in the RDE use case. It features several
parallel structures corresponding to the different stages of the UC: First a driver model is learned from
a set of real-world measurements. This model is then used to generate possible driver behaviour for
new routes which requires a slightly different input format.

 Page 76

AIDOaRt Project nr. 101007350

Figure 25 RDE Data Model

Dynamic Environment Features

The Dynamic Environment Features provide the dynamic details on the road, such as information
about other traffic participants, and signals, such as traffic lights, which are commonly not measured
on test drives.

Static Environment Features

The Static Environment Features describe the static (i.e. unchanging) aspects of a point on a road. This
is mainly given by the road infrastructure but can also include traffic statistics. This could also include
other values not listed here.

Driver Information

This includes meta-information about the driver and could be extended to include other attributes as
well.

Dynamic Driver Behavior

Dynamic Driver Behavior describes an instantaneous snapshot of the driver behaviour. This is
commonly just the velocity but could also include more fine-grained information, such as how much
the gas and brake pedals are pressed.

Driving Cycle

 Page 77

AIDOaRt Project nr. 101007350

A Driving Cycle is the result of a test drive along a given route during which the driver’s behaviour is
continuously recorded using a fixed time step. It also includes meta-information about the car and the
driver.

Route Description

This is a sequence of environment features describing a route which also includes dynamic information
about the situation on the road. This serves as an input to the behavioural driver model from which a
new velocity profile is generated.

Driving Cycle Measurement

A Driving Cycle Measurement is a composition of dynamic driver behaviour and static environment
features.

Environment Features

This information combines static and dynamic environment features, thus giving a detailed view of a
situation on the road.

Vehicle Characteristics

The Vehicle Characteristics give important details which can be used to ensure that the behavioural
model only generates velocity profiles that are actually possible using the specified car.

Meta Information

This is an aggregation of vehicle characteristics and driver information.

Behavioral Dataset

This describes a dataset which is used for generating a behavioural driver model.

Behavioral Driver Model

A Behavioral Driver Model describes a distribution of human driver behaviour depending on the
situation on the road and can be used to generate driver behaviour (i.e. velocity profiles) for a given
route description. A behavioural driver model is defined by a set of input data and a set of parameters.

6.3.3 BT

In this section, we present the data model of BT.

This diagram shows the concepts of the Alstom use case 2. In particular, it defines the classes involved
in the parametrization process of the propulsion system.

 Page 78

AIDOaRt Project nr. 101007350

Figure 26 Automated Parametrization of Propulsion System Controller

Propulsion_System

Propulsion_System class defines the name and type of the propulsion system.

Control_System

Control_System class defines the name and type of the control system.

Sensor

Sensor class defines the sensors used to collect data from the propulsion system.

Sensor_Data

Sensor_Data class defines the data collected from the sensors in the propulsion system.

Model

Model class defines the models used in the control system.

Model_Parameter

Model_Parameter class defines the parameters of the models used in the control system.

 Page 79

AIDOaRt Project nr. 101007350

Parameterization_Method

Parameterization_Method class defines the parameterization method that will be used to find the
parameters of the models in the control system.

PS_Property

PS_Property (Propulsion System Property) class defines the properties of the propulsion system.

CS_Property

CS_Property (Control System Property) class defines the properties of the control system.

Evaluation_Metric

Evaluation_Metric class defines the metrics used to evaluate the parameterization method.

Parameterized_Model

Parameterized_Model class defines the results from the parameterization method.

Experiment

Experiment setup when collected data.

6.3.4 CAMEA

In this section, we present the data model of CAMEA.

Data Model for the AI-based reduced-power radar configuration approach generating Report based
on original configuration and defined constraints.

 Page 80

AIDOaRt Project nr. 101007350

Figure 27 CAMEA Data model

Constrains

Set of constraints for radar configuration tuning.

mmWave Config

Original input configuration of radar sensor.

 Page 81

AIDOaRt Project nr. 101007350

mmwCfgCalc

mmWave configuration class.

Report

Report class as result of executed test.

mmwDataAnalyzer

Communication application for radar sensor.

6.3.5 CSY

In this section, we present the data model of CSY.

This diagram describes the B theory of component and proof obligations. It starts with a project, made
of components. Its compilation generates Proof Obligations that must be proved with proofs to
demonstrate the correctness of the components and therefore of the project itself.

 Page 82

AIDOaRt Project nr. 101007350

Figure 28 CSY Data model

B Project

A B Project describes the product that is worked on. It is basically a container for all other components.
It can be parametrized with a file. It records its own state of completion.

The project has a proof status, meaning that whether it is proved or not, the proof status is part of the
safety demonstration.

B Component

 Page 83

AIDOaRt Project nr. 101007350

A B component is comparable to a class. It can have 3 flavours, a "machine" or "specification" is the
highest level of abstraction. It describes the class on an abstract level. This allows the developer to use
non-implementable descriptions, non-deterministic behaviours or unbounded values.

For example, a machine can describe an operation that sets the variable x to something in N (the
naturals) or say that after 16 ticks, x will always be greater than 12.

On the opposite, a component can be an "implementation", an implementation will be forced to be
deterministic and to use types that can be represented by a computer. It is written in an imperative
style and can be directly translated to C, ADA or JAVA. In between, "refinement" is a component that
refines another component, a machine, or a refinement, and can be further refined by an
implementation.

Using several layers of abstraction is a way to give different levels of complexity and to set properties
on the right level.

Refinements of components always come with a set of proof obligations, to demonstrate that the
refinement is a correct transformation. If not, the proof will be impossible and the project will be
unproven.

Proof Obligation

A proof obligation is a mathematical formula to be proven, in order to ensure that a B component is
correct.

A proof obligation is a mechanic that demonstrates the correctness of the B model. Proof obligations
are generated at every step of the creation of the model. At initialisation, there will be PO to check
that properties hold with initial values. On refinement, there will be PO to connect abstract and
concrete variables, and to verify that the refinement of an operation respects the guarantees set on a
higher level. Also, on operations, there will be PO to verify that component properties are still valid
after the transformation.

The B proof obligations B are self-sufficient, i.e., no implicit information must be used in their
demonstration. All of the proof obligations use the following structure: H ⇒ P, where P and H are
predicates. This formula means that it is necessary to prove the aim P by applying assumption H, H
being generally a conjunction of predicates.

In B, the P predicate and some H assumptions are built by applying one (or more) substitution(s) to a
predicate. As B is a mathematical language, the substitutions and the predicates considered are
directly taken from the B source.

In this model, we call the predicates in H Hypothesis and P the Goal.

Proof

Proofs are demonstrations of proof obligations. They use mathematical transformation and reasoning
like substitution, induction or recursivity to transform and reduce predicates to the truth or untruth
statements. Transformation can be applied by tools called prover that use heuristics to choose the
right substitutions and transformation rules or by a person that will apply commands associated with
transformations based on experience and intuition.

 Page 84

AIDOaRt Project nr. 101007350

Property

Properties of components are what link the variables together. They can be type-binding or logical
relations. They are the main source of proof obligation through refinement or operations.

Variable

The variables can be abstract or concrete, depending on the component they are used. abstract
variables can be elements of set or unbounded numerals, concrete variables can be literals or
enumerate but always refers to an integer.

Operation

Operations are the transformations of the model described in the component. They map easily to
imperative functions. Usually, a component will have an initial state that fixes the value of its variables
at the startup and operation that change those values. Operations have preconditions that reduce
their applicability and postconditions that give guarantees on the variables they modify. Proof
obligations must ensure that the body of an operation applied to variables within its precondition will
respect the postcondition.

Command

Commands are transformation steps to be applied on predicates in order to solve proof obligations.

Automatic Proof

A proof is automatic if it is completely solved by the action of a prover.

Manual Proof

A proof is manual if it is described by a sequence of commands usually written by a person.

Operator

Operators are mathematical relations that connect variables logically or arithmetically. They are the
syntax of the B language.

6.3.6 HIB

In this section, we present the data model of HIB.

Data Model for the log storage in the HIB-logAnalyzer (HIBLA) application based on the logs from
TAMUS. It comprises two classes that every log register has to instantiate and one optional class.

 Page 85

AIDOaRt Project nr. 101007350

Figure 29 HIBLA Log data model

LogBlock1

Requested root and session information for each of the log registers. This is mandatory and is the
'parent' node of a given logged operation.

LogBlock2

Specific information of the processes invoked. This class is optional in all cases and is related to one
LogBlock1 class that is the parent descriptor for each log block.

LogBlock3

Information related to the response given and the processing time for a given request. This is a
mandatory class for each LogBlock1 instance.

6.3.7 PRO

In this section, we present the data models of PRO.

6.3.7.1 SPMP environmental info

This diagram describes the model of data that is exchanged via messages between the different cyber-
physical systems (CPS). Most of the classes describe sensors that collect information on different
parameters of the environmental conditions (weather information, air quality, noise pollution, etc.),
others collect information on the status of some of the services available in the area of interest
(parking, waste containers, wifi, etc.), and finally there are also classes that describe the information
associated with different vehicles that are deployed in the work area (cranes).

 Page 86

AIDOaRt Project nr. 101007350

Figure 30 SPMP environmental info

Address

Information about the concrete location in string format. It is extracted from the "Observation class"
and is used to filter the different elements according to their physical location.

Observation

This class is the central axis of the diagram because it is in charge of listing the different sensors that
are deployed in the area of interest. Therefore, most of the schematic elements are interconnected
with this class.

ObservationKind

Type of observed data: It is a list of the main parameters of the environment that are measured at
each instant of time.

Air

 Page 87

AIDOaRt Project nr. 101007350

Information collected by air sensors is then used to calculate air quality parameters in order to ensure
minimum health conditions for the working environment.

Humidity

Information collected by a humidity sensor to collect humidity conditions both at atmospheric and
ground level.

Noise

Information collected by noise sensors to ensure the quality of the environment in terms of noise level.

Parking

Information collected by a parking sensor to be able to control the parking areas individually by having
information from each of the sensors in the parking spaces to be able to obtain the parking status.

Waste

Information collected by a waste sensor which provides information about the different types of waste
containers: fill level, temperature, door status, etc.

Water

Information collected by a water sensor

Weather

Information collected by weather sensors to measure the main climatological parameters:
temperature, pressure, wind direction and speed, solar radiation, etc.

Wifi

Information collected by a Wifi sensor that provides information on how many devices are connected
and how long they are connected.

Irrigation

Information collected by an irrigation sensor used to control the irrigation valve services of the green
areas in the area of interest.

StraddleCarrier

Information collected on a straddle carrier in the port environment. It includes position information
(Latitude, Longitude and Altitude) at a specific time (UTCTime) and corresponding date (Date). It
includes quality information related to that position information (PosQuality).

PosQualityKind

Class with attributes providing information on the quality of the positioning solution. The more
important attribute is the "fix", which provides the fix-level information according to the NMEA

 Page 88

AIDOaRt Project nr. 101007350

standard. Other attributes provide valuable information related to the reasons for degraded quality,
the level of positioning information that can be considered (2D vs 3D), and to devise the level of
accuracy that might be expected for a degraded quality.

NMEAQualityIndicator

NMEA standard based indication of the quality of the positioning solution. RTK fix should provide cm-
level accuracy (as required for straddle carrier for the smart port use case). The remaining values refer
to degraded levels of position quality.

6.3.7.2 Platform and Application Model

This UML diagram describes two high-level models for a cyber-physical system (CPS), and a set of
associated definitions. The first model hierarchy (PlatformTypeDefinitions) contains elements that
describe the hardware components of the CPS and how these components are connected to each
other. The second-class hierarchy (Module) describes the application software components that are
running on the CPS hardware.

Figure 31 Platform and Application Model

 Page 89

AIDOaRt Project nr. 101007350

PlatformTypeDefinitions

This is a container class which represents all the hardware components in a cyber-physical system.

ProcessorType

ProcessorType describes a processing device, including details of the type of processor and its clock
frequency.

MemoryType

MemoryType describes a memory component, including its size and type of access mode.

DeviceType

Device type is an abstract class for representing all types of devices in a cyber-physical system.

BridgeDeviceType

BridgeDeviceType is a communications bus which interconnects two or more different networks.

ProcessingDeviceType

ProcessingDeviceType represents a processor in a cyber-physical system.

OutputDeviceType

An output port, usually connected to a communications bus.

InputDeviceType

An input port, usually connected to a communications bus.

BusType

BusType is an abstract class which encapsulates the different types of communications buses in a
cyber-physical system.

InternalBusType

InternalBusType is a communications bus that is internal to a processing device.

NetworkBusType

NetworkBusType represents a communications bus or network. This class contains fields such as
latency, bandwidth, message transfer size (MTU) and the maximum number of interfaces that may be
attached to the bus.

Module

 Page 90

AIDOaRt Project nr. 101007350

A Module is a container for objects that describe the application software running on a processor in a
cyber-physical system. It contains a list of the shared resources controlled by the processor as well as
a list of all the software flows of the system.

Flow

A Flow is a software unit. This class contains timing details of the flow as well as its activation type
(e.g.sporadic, periodic, etc.). A GFlow also contains a list of activities or tasks, and how these are
interconnected with each other.

Activity

An Activity is a base class for the most basic type of execution activity in application software. Activities
have timing constraints (deadlines) and may be connected to input and output ports.

SimpleActivity

A basic single activity.

CompositeActivity

A CompositeActivity is an Activity that is composed of other activities that may be interconnected.

ConditionalActivity

A special type of activity that is only executed when a certain condition is satisfied.

6.3.8 TEK

In this section, we present the data models of TEK.

6.3.8.1 Testing modelling elements

Testing data are used for the use case scenarios TEK_UCS_01 “Design choices verification”, which deals
with functional verification of the models and with design space exploration, and for TEK_UCS_02
“Run-time verification”. Currently, the data (descriptions of case tests, test results, tracing data such
as creation/modification and execution data, and author name) are in an Excel workbook together
with the requirements. The structure is such that testing data can be exported in a standard format,
e.g. XML, and from there transformed to other formats.

 Page 91

AIDOaRt Project nr. 101007350

Figure 32 Testing modelling elements

TestData

TestData is the super-class from which all needed data types are derived.

TestSet

A TestSet object is a collection that can serve as a container for multiple TestCase objects that are
related to each other, for example, for the level of requirements that they verify.

TestCase

A TestCase object is a collection of TestExecution objects. When the test case measures and compares
against a threshold a quantity that depends on a parameter (for example, "power greater than 1 Watt
for the temperature that varies from -40 to + 85 °C”), multiple test executions are needed to sample
the parameter range.

TestExecution

A TestExecution object is a sequence of TestStep objects.

TestStep

A TestStep object has a collection, which can be empty, of Input objects and a collection, which can be
empty, of Output objects.

 Page 92

AIDOaRt Project nr. 101007350

Finally, it has a collection, which can be empty, of ExpectedResult objects.

Requirement

The requirement is satisfied when the status of all test steps of all test executions is “passed”. There
is one TestCase object per Requirement object, though a TestCase object may encompass an
indeterminate number of TestExecution objects.

TestObject

The uppermost object of the test, on which the test case acts, is a TestObject object that can be
iteratively composed by other TestObject objects and that is associated with the TestCase object.

Environment

The environment, in which the objects of the test stay, is of the kind Environment that is derived by
TestObject, consequently all pre/post-conditions can be established/checked by the first/last test step.

TestPoint

A TestPoint object is one directed test point of an object of the test (instrumentation can be required):
it can be an output where the measures are taken, or alternatively an input.

Input

Input objects: the members setting specifies the value that is set on the associated input test point at
the beginning of the test step.

Output

Output objects specify the associated output test points where the measures are taken successively.

ExpectedResult

ExpectedResult objects: at the end of the test step, according to the member criteria (at most, equal,
at least), the member value is compared against the member sample of the associated Output objects.
When one of the expected results isn’t verified, the test step fails, the test execution fails and halts,
the test case fails, and the requirement isn’t verified.

6.3.8.2 DataSet modelling elements

Monitoring data are analysed for detecting and classifying anomalies of the software system or of the
physical systems the latter acts on. Classification and detection are enabled by AI-based components.
The equipment currently considered is an automotive inverter. The measured quantities are time-
stamped voltages, currents, and temperatures; some of them require an interface circuit to adapt their
ranges to the sensors. The measured data are filtered by a front end. In the end, the on-board
computing platform obtains the monitoring data for local or remote usage. The logical model of the
data (see Figure 34) is used in the use case scenarios TEK_UCS_03 “Operating life monitoring”. The
model is suitable for the training phase too, and for this, it takes into account that the monitoring data
can be generated through simulation. The final system can use a reduced model.

 Page 93

AIDOaRt Project nr. 101007350

Figure 33 DataSet modelling elements

DataSet

Data are stored in a database that is a collection of DataSet objects (the database physical design is
implementation dependent). A DataSet object is the collection of all measurements that are taken on
a given device. The measurements are recorded in the Measurement array that is a member of
DataSet.

Measurement

The Measurement object is the collection of the measures taken during a measurement session. The
measures are recorded in the Sample array that is a member of Measurement. The measurement
session is identified by the member “name” and spans the time interval from StartTime to EndTime.
The measures are taken periodically as specified by the members SamplingFrequency and
SubSampling. The measures can be generated by simulation, as specified by the member Simulation.
The other members of Measurement specify the conditions under which the measurement session is
executed.

Date Time

The very simple DateTime class was added because not all modelling tools have “date” and “time”
among primitive types.

Sample

The members of a Sample object are the values that result from a multidimensional measure (note:
the member Index is a progressive number incremented for every measure of the sequence).

6.3.9 VCE

In this section, we present the data model of VCE.

This diagram shows the concepts involved in the Volvo Use Case. In particular, it defines the data
exchanges across the partner's solutions integrated in a solution architecture for the Volvo Use Case
on Modeling and Simulation of a Dumper vehicle, its variants, and its subcomponents.

 Page 94

AIDOaRt Project nr. 101007350

Figure 34 VCE UC Overall Data Model

Architecture

The architecture is made up of various connectors, interfaces, and design units. The architecture
contains different views, two were inputs for the AIDOaRt project, while the project develops other
types of Views through the solution architecture developed by the collaborative partners. The views
that were used as inputs were one in Excel and one in Visio. The Visio view was similar to a drawing of
the considered system, while the Excel view was a table that contained something similar to a Bill of
Materials. In the Bill of Materials, information regarding the variant configuration of the different
product line options. Each Architecture regards a particular product line.

Connector

A connector connects a pair of interfaces defined by the PhysicalThings of the Architecture.

Interface

Each design unit contains at least one interface to other design units. These interfaces describe how
the different design units are connected and have an appropriate type and direction.

 Page 95

AIDOaRt Project nr. 101007350

Recommendation

Each of the recommendable elements can be given a recommendation regarding the next action for a
user. This is given in terms of string values which detail the recommended next action. Usually, this is
presented as a list of several potential actions.

Functional Mockup Unit

A Functional Mock-up Unit (FMU) is a software library that can be created using the Functional Mock-
up Interface (FMI) standard [FMI]. The FMI is a free standard that defines a container and an interface
to exchange dynamic simulation models using a combination of XML files, binaries and C code,
distributed as a ZIP file¹. It is supported by 170+ tools and maintained as a Modelica Association Project
[Modelica]. FMUs simulate the behaviour of PhysicalThings in a given Architecture.

ModelingTrace

A modelling trace is an ordered set of elements that correspond to an action performed in the
modelling editor by an end user.

DesignUnit

The design unit is the lowest level description of an element in an architecture description. It
corresponds to the parts that make up a sub-system, and each design unit contains interfaces with
connectors with appropriate types. Furthermore, each unit could be optional for a design, and as well
could be a variable unit and, in such cases, would have two or more variants linked to it. Each Design
unit also has a designated primary system it is attached to and could have a number of secondary
systems it is related to as well.

Variant

A variant is a design unit which has at least 2 or more choices that can be picked when implementing
the particular design unit.

System

The various design units are assigned to systems. Each system has a predefined type, such as electrical,
power, hydraulic, etc. Furthermore, each of the design units might be connected to several systems,
and a distinction is made between what is the primary system for each design unit, and any potential
secondary systems. A secondary system could be another system that takes the input or output of a
particular design unit.

PhysicalThing

Physical thing is the abstract class of Design unit, Module, and Machine. Each physical thing has an ID
and a type of the aforementioned classes.

Machine

A machine is the combination of different modules that together make up the machine under
observation. A machine has an identification for which product type it is. Furthermore, it has an

 Page 96

AIDOaRt Project nr. 101007350

estimation of the total cost of all components in the system, which will vary depending on the variant
selected and which of the optional design units are used in the design.

Module

A module is simply a set of design units that together create a sub-system, particular instances of this
could be a brake system or energy system. A module is something that has clearly defined borders for
the rest of the system.

Model

The model artefacts represent an abstraction of the system under study. The model is identified by a
name and an enumerated type.

6.3.10 WETMO

In this section, we present the data model of WETMO.

UML class diagram of the Westermo Use Case. The diagram describes classes and their relations that
are of relevance to nightly testing and DevOps of industrial communication equipment.

 Page 97

AIDOaRt Project nr. 101007350

Figure 35 Westermo Class Diagram

Risk

Spreadsheet from risk workshops regarding releases of the software under test. In the sheet, for each
release (code branch) of the software under test, risks are identified, tracked and mitigated.

LogFile

In the Westermo use case, several different types of log files are used, e.g. compilation logs, test
execution logs, etc.

TestSystem

A test system topology contains information on the nodes in test systems (e.g. hardware version, serial
number, etc.), as well as the links between nodes (copper ethernet, optical, serial, etc.).

TestSession

 Page 98

AIDOaRt Project nr. 101007350

A test session can be thought of as a suite of test cases run on a certain test system, at a certain point
in time, with a certain revision of the Fawlyt test framework, a certain revision of WeOS, the software
under test. Only test sessions that are allocated can start.

TestOutcome

A test outcome represents when we run a certain test case on a certain test system at a certain point
in time, as well as what the verdict was.

TestCase

A test case contains a description of what we want to test such that a human or the test framework
could perform it. There is almost always source code for the automated test case, as well as a test case
topology description on requirements from the test case on the test system (not all test cases can run
on all test systems).

CodeChange

A code change describes the difference of one or more source code file(s), as well as information on
who did the code change, when, and a plain text description of why.

DeviceInfo

DeviceInfos describe hardware used for testing. General information such as model is stored, as well
as information on individual hardware devices (serial number).

Mapping

Mappings describe how devices were used in test cases.

FunctionalArea

A functional area represents a type of feature or communication protocol in WeOS, e.g. firewall, DHCP,
etc. Test cases typically belong to one or more functional areas, but may not belong to any one in
special cases. Not all test systems can run test cases for all functional areas (e.g. tests for serial
protocols may require hardware with a serial port).

HardwareFamily

A hardware family represents a group of hardware products that share most components and that are
only different in minor ways.

CodeBranch

A code branch is both a sub-project for a release and a way to organise code. Often, many code changes
belong to each code branch. Sometimes new code branches introduce new functional areas, meaning
that there is some mapping between code branches and functional areas -- not all areas can be tested
with all branches. Also, not all hardware products are supported for all code branches.

NightlyAllocation

 Page 99

AIDOaRt Project nr. 101007350

The NightlyAllocation is a representation of what code branches we run on what test systems, how
much, and at what date intervals, E.g. one week, we may run branch X on test system A 50% of the
night, and on test system B 30% of the night. Branch Y has another allocation, and branch Z is not
allocated for testing since it has been completed and merged into the main branch. Each night, the
NightlyAllocations decide what test sessions we start. If allocations are changed many times in one
day, only the latest settings will trigger test sessions, so some allocations will never trigger test
sessions.

Person

A person in this context is a member of the team. She could be the author of a code change that is to
be tested, and/or responsible for mitigating a risk that has been identified for a code branch. If
reported, the person who performed the testing for a risk usually is the same person responsible for
the risk mitigation.

6.4 AIDOaRt Generic Data Model

In this section, we present the data models of the AIDOaRt Generic Data Model.

6.4.1 Requirements Engineering

The Requirements Engineering data model contains generic elements to represent the functional and
non-functional requirements of a system, derived from an analysis of the stakeholders and context
needs. A requirement could be a refinement of customer requirements, which are directly stated by a
customer. A requirement is expressed from the point of view of the system.

Data models from Use Case providers ABI and TEK contain definitions related to the Requirements
Engineering phase. Their elements also enrich the AIDOaRt generic entities.

 Page 100

AIDOaRt Project nr. 101007350

Figure 36 AIDOaRt Generic Data Model - Requirements Engineering Class Diagram

CustomerRequirement

A customer requirement represents the high-level specification of a need/constraint expressed by a
customer. These requirements motivate customers to buy a product or service.

Requirement

A requirement is the specification, in terms of features or other software-/hardware-related needs
that satisfy customer requirements.

A requirement is of one type: functional (it should be implemented as a functionality of the product)
or non-functional (it should be taken into account when designing the final system so that it fulfils
these quality constraints).

A requirement has a priority, which will facilitate the process of selecting and implementing
requirements according to business and customer preferences.

6.4.2 Modelling

Modelling is an essential activity in an MBRE approach, in which an abstract representation of a system,
an element of a system, or its behaviour, is depicted and implemented, and becomes its central asset.

 Page 101

AIDOaRt Project nr. 101007350

Note the difference between "modelling a system" and "modelling its behaviour". In a few words,
modelling a system is creating a visual representation of the system and its elements to, for instance,
support making architectural design decisions or automating code generation. Modelling a system
behaviour, on the other hand, may imply the implementation, training and evaluation of an AI/ML
algorithm to recognise patterns and make predictions or decisions.

AVL, BT and VCE use models of different nature, and in different development phases, in their use
cases. Their models are specific to their respective application domains.

Figure 37 AIDOaRt Generic Data Model - Modelling Class Diagram

Model

A model is a simplified description or a mathematical/abstract representation of a system, an element
of a system, or a process.

TestModel

A model is used in a testing phase to help simulate the actual conditions and behaviour of the system,
in a controlled, simplified environment. Fine-tuning a model in the test phase is essential to get to the
best model regarding its performance and accuracy.

ProductionModel

A model in production is used to perform real-time calculations and make predictions based on both
observed and historical data. Such a model is useful to automate actions or make recommendations
to the user of the system.

SystemModel

A system model is mainly used for driving the design and construction of a complex system, thanks to
the use of modelling tools, in an MDE approach.

AIModel

 Page 102

AIDOaRt Project nr. 101007350

An AI/ML model recognises patterns and assists in making simulations, predictions, recommendations
and decisions.

6.4.3 Testing

Testing software and AI models is an essential step in the development lifecycle so that the team is
able to detect bugs early and resolve them prior to a production release, or identify potential
enhancements in the parameterization and configuration of AI models and systems.

There are several tools for automating testing, which eliminate the human risk of skipping errors, and
require the definition and management of test cases/scenarios. The Testing data model contains
elements for representing the definition and automation of tests and the adapting nature of the AI
models (and other physical or logical elements) being tested.

AVL, CAMEA, TEK and WMO have their concrete test data models, specific to their particular domains.

Figure 38 AIDOaRt Generic Data Model - Testing Class Diagram

 Page 103

AIDOaRt Project nr. 101007350

TestCase

A test case is a set of actions executed to verify a particular feature or functionality of the system. A
test case usually consists of test steps and test input data, and are part of a test scenario.

TestEnvironment

The test environment represents the conditions in which test cases are executed. It usually emulates
the actual context in which the system could be placed in production, under controlled variables.

TestExecution

A text execution is a specific instance of a test case which ran in a testing environment, given input
testing data and other testing configuration parameters. As a result, a set of data is generated.

TestResult

The execution of tests generates testing output data that is further analysed. This data is put in contrast
with expectations and/or criteria that will discriminate if the test has been successful.

TestParameter

A series of test parameter values are tried in order to fine-tune successive tests, with the aim of
achieving the best configuration of the system. They could be used in production as a baseline to
monitor the variation of actual data.

EvaluationMetric

A set of metrics is defined to evaluate whether the output data from a test execution conforms to the
expectations of the test case, and is aligned with the business goals.

An evaluation metric is not only used in test environments but also in production, to continuously
monitor the performance of the system, based on actual collected data.

TestScenario

A test scenario provides a high-level point of view of the actions to perform a test. It corresponds to
any functionality that can be tested and contains a set of test cases which helps the testing team to
determine the status of the product.

Requirement

A requirement is the specification, in terms of features or other software- / hardware-related needs
that satisfy customer requirements.

A requirement is of one type: functional (it should be implemented as a functionality of the product)
or non-functional (it should be taken into account when designing the final system so that it fulfils
these quality constraints).

A requirement has a priority, which will facilitate the process of selecting and implementing
requirements according to business and customer preferences.

 Page 104

AIDOaRt Project nr. 101007350

EvaluationCriteria

The evaluation criteria must be fulfilled by the test result or the data collected in production. In the
scenario where a criterion is not met, it would be necessary to apply changes to the system or re-
generate tests, to make sure that the system performance is still aligned to business needs.

6.4.4 Monitoring

In this section, we present the data models of Monitoring.

6.4.4.1 AIDOaRt Generic Data Model - Monitoring Class Diagram

Monitoring a system in production allows teams to respond to any degradation in the customer
experience. The huge number of devices, sensors and actuators that interact with each other makes
extremely important the need for continuous and (semi)automated monitoring.

In the Monitoring data model, the data that is collected from the sensors is measured against a set of
evaluation metrics that allow, whenever it is possible, to automatically evaluate if an anomaly or a
degradation of the system has occurred. Those metrics are set according to a series of KPIs that define
the target performance of the system.

AVL, BT, PRO, TEK and VCE corresponding monitoring data models enrich the AIDOaRt generic
elements with specific attributes and elements for their respective scenarios.

 Page 105

AIDOaRt Project nr. 101007350

Figure 39 AIDOaRt Generic Data Model - Monitoring Class Diagram

Sensor

 Page 106

AIDOaRt Project nr. 101007350

A sensor is a device that continuously collects data from the context and sends it to the system in order
to be analysed. There is a large variety of sensors, specialised in quantitatively measuring different
characteristics of the environment.

Measurement

A measurement is an instance of data that has been observed from the environment. Its structure and
data, data types and units are specific to the domain.

Observation

This class is the central axis of the diagram because it is in charge of listing the different sensors that
are deployed in the area of interest. Therefore, most of the schematic elements are interconnected
with this class.

MetricActualValue

The actual value of a metric is calculated from the measurements made by the system, and is put in
contrast to the corresponding defined evaluation metrics. When an actual measurement implies that
a threshold set by an evaluation metric is surpassed or not achieved, it will lead to a further analysis of
the system's performance and adequacy to business needs.

EvaluationMetric

A set of metrics is defined to evaluate whether the output data from a test execution conforms to the
expectations of the test case, and is aligned with the business goals.

An evaluation metric is not only used in test environments but also in production, to continuously
monitor the performance of the system, based on actual collected data.

Device

A device is a physical or logical element of the system. A device may contain sensors to collect data
from the environment, and other devices or elements (e.g. actuators).

6.4.4.2 AIDOaRt Generic Data Model - Log Monitoring Class Diagram

Log monitoring is a supporting activity for system monitoring. Logs contain useful information that is
collected throughout the system, throughout all its development phases. Monitoring is an activity that
is not only performed in the production, with actual observed data but also in other development
phases such as coding (for instance, to detect lines of code that introduce bugs) and testing (to support
the assessment of the system being tested).

HIB and WMO manage and evaluate logs in their respective use cases.

 Page 107

AIDOaRt Project nr. 101007350

Figure 40 AIDOaRt Generic Data Model - Log Monitoring Class Diagram

Log

Logs are information that is collected in several phases of development (e.g. coding, testing,
monitoring). Logs could be used to trace errors or to support an analysis of the system.

ExecutionLog

Execution logs are a concrete sub-type of logs. They are collected in production and provide additional
information regarding the actual use of the system.

6.5 Conclusions and Next Steps

The mega-model is the result of an invaluable, combined effort between all partners of the consortium.
UC providers have their area of expertise, and this is reflected in Figure 42 where we see the partners
who contributed to each of the AIDOaRt generic layer sub-diagrams with their own data model
elements.

Figure 41 Mapping of UC partners who provided any concrete data element to an AIDOaRt phase

We have finally identified and specified 21 generic elements. It can be highlighted the popular interest
in the Testing and Monitoring phases, which led to a more diverse definition of generic elements in
these areas. Synergies and shared interests between partners are more probable to happen there. We
have, on average:

● 2,5 concrete elements per generic one in the Requirements phase;
● 2,56 concrete elements per generic one in the Testing phase; and
● 3,4 concrete elements per generic one in the Monitoring phase (excluding log monitoring

ones).

 Page 108

AIDOaRt Project nr. 101007350

The average calculation is not straightforward in the Modelling phase since we did an additional
abstraction exercise which resulted in more generic elements than concrete ones.

We have presented the first version of the mega-model and look forward to iterating on it as needed
throughout the rest of the project. The first set of mega-modelling activities has been completed timely
enough so that the project still can make use of the resulting output asset to boost its advances. As
with any data model, the mega-model is a live asset that will continuously evolve in response to
changes in the context of the scenarios it is representing, or adapt to new necessities from UC partners.
In subsequent deliverables corresponding to other work packages, we expect to describe to what
extent the partners have used and mainly benefited from the mega-model. We hereby encourage
partners whose UC data models have entities mapped to the abstract elements of the mega-model to
review commonalities with other partners, and evaluate a potential collaboration.

In this latter sense, a first potential collaboration has already been pointed out, which involves partners
Westermo and HI Iberia, as they share an interest in regard to the activity of log monitoring. This has
been spotted thanks to the connection established in the mega-model between Westermo’s and HI
Iberia’s data models (see Figure 41). There it can be seen the generic entities Log and ExecutionLog
connecting similar elements from WMO’s and HIB’s respective concrete data models.

We expect that partners will make the most of this partnership and the existing synergy between their
concerns and also that the mega-model will be refined and further enriched.

 Page 109

AIDOaRt Project nr. 101007350

7 Conclusion

This last deliverable of WP2 reports labour in the general context of data related processing in its three
tasks, design time and runtime data collection, internal data representation, and data cleaning,
analysis, and management. The status of the different date related solutions for the AIDOaRt Core Tool
Set components and the way they can work to solve the challenges posted in the various use cases
that need the Data Engineering Tool Set developed in AIDOaRt is here reported using the mappings to
the components defined in the AIDOaRt conceptual Framework as a means to organise their
presentation, something that we expect shall facilitate their reutilization to future readers.

As a relevant contribution, this final version of this Data Collection and Representation report proposes
a mega-model as a comprehensive data modelling managing tool, a generic data representation model
that is expected to be implemented and reused in a variety of stages of the DevOps process. This is
constructed as an abstract summary of the data models used in the use cases with the aim of providing
a common, agreed-upon, global data representation that can serve as a foundation for MDE-based
activities throughout the various components and usages of the AIDOaRt framework. The modelling
elements in the mega-model are organised according to aspects like requirements engineering,
modelling, testing, monitoring, and the management of logs.

Further exploitation, usage, and evaluation of this mega-model will be done considering its ability to
formalise and automate: the collection, storage, harmonisation, filtering, clustering and cleaning of
data, the management of logs, weight the quality of data, model DevOps workflows, requirements,
tests, or even general parameters of physical objects to support digital twins, for example. Relevant
advances on these concerns may be reported in the remaining deliverables of other work packages,
mainly in those of the integration work package (WP5).

 Page 110

AIDOaRt Project nr. 101007350

8 Bibliography

[AIDOART-D1.4] AIDOaRt consortium: Architecture Specification Final Version, 2022. (Access
restricted to the AIDOaRt project's consortium)

[AIDOART-D2.2] AIDOaRt consortium: Data collection and representation - Intermediate Version,
2022. (Access restricted to the AIDOaRt project's consortium)

[AIDOART-D5.3] AIDOaRt consortium: AIDOaRt Integrated Framework - Intermediate Version, 2023
(Access restricted to the AIDOaRt project's consortium)

[FMI] Functional Mock-up Interface. https://fmi-standard.org/

[ISO-11898-1] International Organization for Standardization, “Road vehicles – Controller area network
(CAN) – Part 1: Data link layer and physical signalling,” International Organization for
Standardization, ISO Standard 11898-1, 2015.

[Modelica] Modelica Association. https://modelica.org/

https://fmi-standard.org/
https://modelica.org/

	DOCUMENT REVISION LOG
	Executive Summary
	Key Terminology Abbreviations
	Partners Names Acronyms
	1 Introduction
	2 Progress status of the AIDOaRt Data Engineering Tool Set
	2.1 Solution - ESDE (ACO))
	2.1.1 News and Updates
	2.1.2 Capabilities Implementation Status

	2.2 Solution - Position Monitoring for Industrial Environment (ACO))
	2.2.1 News and Updates
	2.2.2 Capabilities Implementation Status

	2.3 Solution - Kolga (AND)
	2.3.1 News and Updates
	2.3.2 Future Capabilities Implementation Roadmap

	2.4 Solution - devmate (AST)
	2.4.1 News and Updates
	2.4.2 Capabilities Implementation Status
	2.4.3 Future Capabilities Implementation Roadmap

	2.5 Solution - Keptn (DT)
	2.5.1 News and Updates
	2.5.2 Capabilities Implementation Status

	2.6 Solution - EMF Views (IMTA)
	2.6.1 News and Updates
	2.6.2 Capabilities Implementation Status
	2.6.3 Future Capabilities Implementation Roadmap

	2.7 Solution - a2k-runman (ITI)
	2.7.1 News and Updates
	2.7.2 Capabilities Implementation Status
	2.7.3 Future Capabilities Implementation Roadmap

	2.8 Solution - ConvHandler (ROTECH)
	2.8.1 News and Updates
	2.8.2 Capabilities Implementation Status

	2.9 Solution - Bridger (ROTECH)
	2.9.1 News and Updates
	2.9.2 Capabilities Implementation Status

	2.10 Solution - AsyncAPI Toolkit (UOC)
	2.10.1 News and Updates
	2.10.2 Future Capabilities Implementation Roadmap

	3 Mapping Solutions to AIDOaRt Data Engineering Tool Set Components
	3.1 Mapping to Data Collection
	3.2 Mapping to Data Management
	3.3 Mapping to Data Representation
	3.4 Updates from the previous deliverable

	4 Mapping Use Case Requirements to AIDOaRt Data Engineering Tool Set Components
	4.1 Mapping to Data Collection
	4.2 Mapping to Data Management
	4.3 Mapping to Data Representation
	4.4 Concluding remark

	5 Applications of AIDOaRt Data Engineering Tool Set Solutions in Use Cases
	5.1 Operating Life Monitoring - TEK, ROTECH
	5.2 Application in Anomaly Detection in Cyber-Physical Systems – Location Optimization Challenge - PRO, ACORDE, ITI, UOC
	5.2.1 Data Quality IoT
	5.2.2 Infrastructure Performance Resizing of Resources Based on Current Workload - Power Aware Scheduling
	5.2.3 Positioning Monitoring for Industrial Environment

	5.3 Concluding remark

	6 AIDOaRt Data Mega-Model
	6.1 Definition, Goals and Expected Benefits of the AIDOaRt Mega-Model
	6.2 Approach to Design the AIDOaRt Mega-Model
	6.2.1 Collect UC Data Models
	6.2.2 Analyse UC Data Models
	6.2.3 Normalise UC Data Models
	6.2.4 Create the Generic Layer

	6.3 Use Case Data Models
	6.3.1 ABI
	6.3.2 AVL
	6.3.2.1 ODP Data Model
	6.3.2.2 SEC Data Model
	6.3.2.3 TCV/MBT Data Model
	6.3.2.4 RDE Data Model

	6.3.3 BT
	6.3.4 CAMEA
	6.3.5 CSY
	6.3.6 HIB
	6.3.7 PRO
	6.3.7.1 SPMP environmental info
	6.3.7.2 Platform and Application Model

	6.3.8 TEK
	6.3.8.1 Testing modelling elements
	6.3.8.2 DataSet modelling elements

	6.3.9 VCE
	6.3.10 WETMO

	6.4 AIDOaRt Generic Data Model
	6.4.1 Requirements Engineering
	6.4.2 Modelling
	6.4.3 Testing
	6.4.4 Monitoring
	6.4.4.1 AIDOaRt Generic Data Model - Monitoring Class Diagram
	6.4.4.2 AIDOaRt Generic Data Model - Log Monitoring Class Diagram

	6.5 Conclusions and Next Steps

	7 Conclusion
	8 Bibliography

