
Software and Systems Modeling
https://doi.org/10.1007/s10270-023-01102-8

SPEC IAL SECT ION PAPER

MORGAN: a modeling recommender system based on graph kernel

Claudio Di Sipio1 · Juri Di Rocco1 · Davide Di Ruscio1 · Phuong T. Nguyen1

Received: 1 April 2022 / Revised: 11 February 2023 / Accepted: 6 March 2023
© The Author(s) 2023

Abstract
Model-driven engineering (MDE) is an effective means of synchronizing among stakeholders, thereby being a crucial part of
the software development life cycle. In recent years, MDE has been on the rise, triggering the need for automatic modeling
assistants to support metamodelers during their daily activities. Among others, it is crucial to enable model designers to
choose suitable components while working on new (meta)models. In our previous work, we proposed MORGAN, a graph
kernel-based recommender system to assist developers in completing models and metamodels. To provide input for the rec-
ommendation engine, we convert training data into a graph-based format, making use of various natural language processing
(NLP) techniques. The extracted graphs are then fed as input for a recommendation engine based on graph kernel simi-
larity, which performs predictions to provide modelers with relevant recommendations to complete the partially specified
(meta)models. In this paper, we extend the proposed tool in different dimensions, resulting in a more advanced recommender
system. Firstly, we equip it with the ability to support recommendations for JSON schema that provides amodel representation
of data handling operations. Secondly, we introduce additional preprocessing steps and a kernel similarity function based on
item frequency, aiming to enhance the capabilities, providing more precise recommendations. Thirdly, we study the proposed
enhancements, conducting a well-structured evaluation by considering three real-world datasets. Although the increasing size
of the training data negatively affects the computation time, the experimental results demonstrate that the newly introduced
mechanisms allow MORGAN to improve its recommendations compared to its preceding version.

Keywords Model-driven engineering · Recommender systems · Graph kernels

1 Introduction

The deployment of model-driven engineering (MDE) tech-
niques necessitates advanced tools to facilitate various mod-
eling activities [1,2]. Among others, there is the need to
specify metamodels, models and the development of model
analysis and management operations. Nevertheless, existing

Communicated by Shiva Nejati and Daniel Varro.

B Davide Di Ruscio
davide.dirsucio@univaq.it

Claudio Di Sipio
claudio.disipio@univaq.it

Juri Di Rocco
juri.dirocco@univaq.it

Phuong T. Nguyen
phuong.nguyen@univaq.it

1 Universitádegli studi dell’Aquila, L’Aquila, Italy

tools such as those that are based on Eclipse EMF1 normally
offer only canonical functionalities, i.e., drag-and-drop,
specification of graphical components, auto-completion, and
they do not support context-related recommendations, which
may come in handy for modelers to complete their tasks. In
this respect, intelligent modeling assistants (IMAs) [3] have
been recently proposed to supportmodelers during their daily
activities. Most of the existing tools employ technologies
such as neural networks and NLP techniques to automatize
the whole design process [4,5]. Altogether, this aims to facil-
itate the completion of metamodels by providing modelers
with insightful artifacts, such as attributes or relationships.
Nonetheless, there are still open challenges to be tackled,
e.g., offering a convenient way to specify metamodels and
models, covering different application domains.

In our previous work, we developed MORGAN [6]—a
MOdeling Recommender system based on a Graph neurAl
Network to support the completion of both models andmeta-
models. MORGAN has been evaluated using two real-world

1 https://www.eclipse.org/modeling/emf/.

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10270-023-01102-8&domain=pdf
http://orcid.org/0000-0001-9872-9542
http://orcid.org/0000-0002-7909-3902
http://orcid.org/0000-0002-5077-6793
http://orcid.org/0000-0002-3666-4162
https://www.eclipse.org/modeling/emf/

C. Di Sipio et al.

datasets composed of models and metamodels. The exper-
iment results showed that our proposed tool can provide
relevant recommendations related to model classes and class
members, as well as relevant metaclasses and structural fea-
tures.

In this work, we improve the existing system to yield an
advanced version, by supporting the completion of models
expressed in Javascript Object Notation (JSON).2 Such a for-
mat is used to represent data in a structured way, fostering
the interchangeability of valuable information. Evenwith the
introduction of JSON schema meta-language [7], it is still
essential to assist developers during their specification. In
this respect, a recent work presents a bridge between the
JSON schema and MDE metamodels, suggesting that MDE
techniques can come in handy in designing such models [8].
Thus, we introduce the support for JSON schema completion
by relying on a tailored parser to encode these specifica-
tions in a graph-based structure. Furthermore, we overhaul
the underlying recommendation engine by introducing (i) a
lemmatization preprocessing step to improve MORGAN ’s
encoding; and (ii) an enhanced graph kernel function by rely-
ing on a modified version of the Vertex Histogram technique
[9] that exploits a frequency matrix. To enable the recom-
mendation on the new dataset, we mined JSON schema from
GitHub repositories by using a well-defined crawler. After-
ward, the relevant features are represented in a graph-based
structure to encode information represented by the model,
e.g., relationships among defined entities, the name of the
attributes, to list a few. Such an encoding process exploits a
set of tailored parsers that produce textual files from different
formats used to represent the modeling artifacts of interest.
MORGAN eventually suggests relevant artifacts including
the JSON schema elements, demonstrating the generalizabil-
ity of the system. Furthermore, we tested the performance of
MORGAN on ModelSet, a recent and publicly available
dataset composed of a large number of modeling artifacts
[10]. Using the provided interfaces, we filter the original data
to obtain two different datasets composed of Ecoremetamod-
els and UML class diagrams. The aim is to investigate the
system’s scalability by increasing the training data size.

To study the proposed mechanisms, we conduct an empir-
ical evaluation to compare the new results with those
presented in our previous work, exploiting several quality
metrics. Our findings demonstrate that the introduced boost-
ing schemes contribute to improving the overall accuracy,
though MORGAN suffers from scalability issues when a
larger number of training artifacts are considered. In this
respect, the newly conceived system is capable of provid-
ing modelers with a practical means to perform their tasks
even considering a different application domain.

2 https://www.w3.org/TR/json-ld11/.

To this end, compared to our previous work [6], this exten-
sion makes the following contributions:

– We improve the underlying recommendation engine by
adopting a well-defined graph kernel;

– Three additional datasets have been considered to test the
generalizability and scalability of MORGAN ;

– A protocol to download model representation from
GitHub repositories is defined;

– A replication package is made available to facilitate
future research.3

Structure.Section2 presents an illustrative example tomoti-
vate our proposed approach as well as an overview of the
graph kernel algorithm. The main components ofMORGAN
are described in Sect. 3. In Sect. 4, we explain in detail the
methods and materials to conduct an empirical evaluation.
Section5 reports and analyzes the obtained results. After-
ward, possible threats to the validity of our findings are listed
in Sect. 6. We review relevant work and conclude the paper
in Sects. 7 and 8, respectively.

2 Motivations and background

Section 2.1 introduces explanatory examples to show tradi-
tional operations involved in the modeling activities. This
section also motivates our work by describing two scenarios
where automated support is provided to help modelers com-
plete their tasks. Section2.2 presents an overview of graph
neural networks (GNNs) and graph kernel similarity and how
they can be used to cope with the identified issues.

2.1 Motivating example

We simulate a modeler who is specifying a metamod-
el/model, and at certain point in time, due to either the
complexity of the required task or the lack of experience,
he/she does not know how to proceed. In this respect, amodel
assistant is expected to help enhance the specification of a
partial model by recommending new elements as illustrated
below.
Metamodeling assistant. Fig. 1 represents the explanatory
UmlDSLmetamodel. At the time of consideration, the mod-
eler has definedonly basic attributes andone relation between
the Step andFlow entities. In particular, the initialmetamodel
specified in Fig. 1a defines the key concepts to represent a
UML UseCase, i.e., Actor, Step, and Flow. Figure1b rep-
resents the final version of the corresponding metamodel,
where the PackageDeclaration entity is completed with use

3 https://github.com/MDEGroup/MORGAN.

123

https://www.w3.org/TR/json-ld11/
https://github.com/MDEGroup/MORGAN

MORGAN: a modeling recommender system based on graph kernel

Fig. 1 The illustrative UmlDSL

Fig. 2 The explanatory SpringBoot model

cases and actors references, and each use case can have sev-
eral flows composed of a sequence of steps. By comparing the
two sub-figures, we see that some assistances are needed to
enrich the partialmetamodel shown inFig. 1a, e.g., by adding
new classes, attributes or relations.Moreover, it is also neces-
sary to suggest newmetaclasses including structural features,
i.e., attributes and references. For instance, as seen in Fig. 1b,
the final LocalAlternativemetaclass includes the description
and includedUseCase structural features, and this makes the
original metaclass more informative/complete. In this way,
the assistant should be able to provide the modeler with use-
ful recommendations to help her finalize the metamodeling
activities.

In fact, metamodels are used to represent concepts at a
high level of abstraction. To design real systems,MDEmakes
use of models that usually conform to a corresponding meta-
model. As a result, recommending additional elements to be
incorporated in modeling activities is also meaningful. We
show the extent to which the recommendation of models is
useful in the following use case.

Modeling assistant. We make use of the MoDisco frame-
work4 to extract models from compilable Eclipse projects.
As an example, we show in Fig. 2a an excerpt of the Java
model of the Spring bootproject5 parsed by MoDisco . The
model conforms to the MoDisco Java metamodel, covering
the full Java language and constructs, i.e., packages, classes,
methods, and fields. In this way, existing Java programs can
be represented asMoDisco Javamodels. In particular, Fig. 2a
depicts a partial Java model with the following five classes:

1. LateBinding;
2. FunctionalBindingRegistrar;
3. StreamListenerHandlerMethodMapping;
4. PolledComsumerResources; and
5. ConditionalStramListenerMessageHandlerWrapper.

All these classes are incomplete at the time of consideration,
and the modeler is supposed to add the missing items. For

4 https://www.eclipse.org/MoDisco/.
5 https://spring.io/projects/spring-boot.

123

https://www.eclipse.org/MoDisco/
https://spring.io/projects/spring-boot

C. Di Sipio et al.

Fig. 3 The explanatory Apache Streams Provider JSON Schema

the sake of presentation, we show the general structure of
the Spring boot Java model in terms of classes, methods,
and fields. As it can be seen, similar to the above men-
tioned UmlDSL metamodel, an incomplete Java model can
be enriched with new classes, methods, and fields. In Fig. 2b,
we represent a set of possible model elements to complete
the partial model. In particular, the model elements tagged
by suggested are the ones that should be recommended for
completing the model. For instance, two classes including
their methods and fields are recommended, i.e., Condi-
tionAndOutcomes and DefaultAsyncResult. Moreover, the
model assistant is expected to recommend missing class ele-
ments, e.g., the error field and the getError method for the
LateBinding class.
JSON schema assistant. Similarly, modeling assistants can
be employed to complete a partial JSON schema with rel-
evant properties. Although they are artifacts of different
nature, Colantoni et al. [8] investigate the potential benefits
of mapping JSONware technical space to Modelware one,
with the aim of making use of languages and documents
exchangeable. Their approach supports language engineers,

domain experts, and tool providers in editing, validating,
and generating tool support with enhanced capabilities for
JSON schemas and their documents. The results show that
it is possible to derive editing and validation support based
on model-driven technologies for JSON Schema-based lan-
guages. Therefore, modeling assistants could be employed
to support the completion of such kinds of artifacts. Fig-
ure3 shows an explanatory examplewith theApache Streams
provider6 JSON schema to describe aMedia entity. Given the
partial schema depicted in Fig. 3a, we mimic the situation
where the modeler has specified a set of initial 11 proper-
ties, e.g., tags, copyright, url, author to name a few. At this
point, an automated system might be used to fill the partial
JSON schema with additional items, such as new proper-
ties at schema level or nested ones. In Fig. 3b, we devise
a possible set of recommendations that includes additional
properties, e.g., dataFormat, language, adultLanguage. Fur-
thermore, the locations structural property can be enriched

6 https://streams.apache.org/.

123

https://streams.apache.org/

MORGAN: a modeling recommender system based on graph kernel

with concepts that can increase the expressiveness of the
whole schema, i.e., country, region, subregion, and state.

Thepresented use cases raise the need for amodel assistant
to support the completion of partially defined metamodels,
models, and JSON schema. Since modeling activities are
strongly bounded by the domain, a modeler who has lim-
ited knowledge of it may encounter some difficulties. Thus,
we propose a recommender system that relies on two main
concepts, i.e., neural networks applied to graphs and kernel
functions, to assist both metamodeling and modeling activ-
ities. The following subsections describe these two building
blocks in detail.

2.2 Graph kernel similarity

A graph is often represented as an adjacency matrix A of
size N × N , where N is the number of nodes. If each node
is characterized by a set of M features, then a dimension
of feature matrix X is N × M . Graph-structured data are
complex, and thus, it brings a lot of challenges for existing
machine learning algorithms.

Given a graph, the prediction phase can be realized by
following two different strategies, i.e., link-level prediction
or node-level classification. The former requires to represent
the relationship among nodes in graph and predict if there is a
connection between two entities. In latter, the task is to under-
stand node embedding for every node in a graph by looking at
the labels of their neighbors. With graph-level classification,
the entire graph needs to be classified into suitable categories.

Different kinds of algorithms can be used to produce rec-
ommendations, i.e., vector-space embedding [11] and graph
kernel [12]. The former involves the annotation of nodes
and edges with vectors that describe a set of features. Thus,
the prediction capabilities of the model strongly depend on
encoding salient characteristics into numerical vectors. The
main limitation is that the vectors must be of a fixed size,
which negatively impacts the handling of more complex
data. In contrast, the latter works mostly on graph structure
by considering three main concepts, i.e., paths, subgraphs,
and subtrees. Such techniques support feature embeddings
with mutable sizes, which eventually may lead to interesting
results in the modeling domain [13].

Formally, a graph kernel is a symmetric positive semidef-
inite function k defined for a pair Gi and G j such that the
following equation is satisfied:

k(Gi ,G j) = 〈φ(Gi), φ(G j)〉H (1)

where 〈·, ·〉H is the inner product defined into aHilbert Space
H.

A graph kernel computes the similarity between two
graphs by adopting several different strategies. Among
these, the Weisfeiler–Lehman optimal assignment algorithm

(WLOAkernel hereafter) [14] is built on top of existing graph
kernels and it is inspired by the Weisfeiler–Lehman test of
graph isomorphism [15].

In the previous version of MORGAN [6], we opted for
the WLOA technique to measure the similarity as it offers a
linear complexity. The algorithm replaces each vertex with
a multiset representation consisting of the original one plus
neighbors’ features. Given two graphs G and G ′, the WLOA
kernel is defined as follows:

k(G,G ′) = Kk
B(V , V ′) (2)

where k is the employed base kernel, defined below:

k(v, v′) =
h∑

i=0

δ(τi (v), τi (v
′)) (3)

where τi (v) is the label of node v at the end of i th iteration of
the Weisfeiler–Lehman algorithm. However, for this kernel
recommendation time is strongly bounded by the nature of
the input data.

In this extension, we consider a different class of kernel
function, namely theVertexHistogram [9], to analyze towhat
extent the adoption of a different technique can reduce the
whole prediction time.

In practice, given a pair of graphsG andG ′, let f , f ′ be the
vertex histograms of the two graphs. The Vertex Histogram
kernel is computed according to the following formula:

k(G,G ′) = 〈f, f ′〉 (4)

where f, f ′ are the vertex label histograms obtained by apply-
ing the mapping function � : V → L that assigns labels to
the vertices of the graphs.7

Even though the underlying structure is not considered
by the employed kernel, our empirical results demonstrate
that MORGAN achieves better performances in terms of
accuracy and time computation compared to the Weisfeiler–
Lehman for this specific task. Therefore, we employ such
a strategy to compute the similarity among the considered
models and metamodels, which are encoded as graphs as
described in the next section.

3 Proposed approach

This section describes in detail the proposed approach,
whose architecture is depicted in Fig. 4. Starting from a
partial model, MORGAN uses tailored model parsers to

7 This process is internally performed by the Python implementation
offered by Grakel.

123

C. Di Sipio et al.

Fig. 4 The MORGAN architecture

extract relevant information in textual data format. Along-
side the two independent parsers developed in the original
work, i.e., one for metamodels and the other for models, we
conceive two additional parsers tailored for JSON schema
and UML models. The NLP module executes the encod-
ing to generate graphs that can be used by the underlying
graph kernel engine. In this work, we enrich this compo-
nent with a lemmatization strategy to increase the amount
of valuable information. Furthermore, we adopted the Ver-
tex Histogram kernel as the underpinning recommendation
engine which is based on item frequency. As the final rec-
ommendations, MORGAN returns the missing elements of
the artifact under development, i.e., either a metamodel or a
model.8 We describe the constituent components as follows.

3.1 Parsers

This component extracts relevant information from the input
artifact by using four different parsers, i.e., Ecore parser
for metamodels, MoDisco parser for MoDisco models,
UML parser for UMLmodels, and a standard JSON parser9

for JSON schema. Because metamodels and models are
expressed in the XMI or Ecore format, the first three parsers
rely on EMF utilities10 to extract their information. In con-
trast, the JSON schema parsers rely on utilities that embody
the standard reference schema.

8 To facilitate the presentation, the common name artifact refers to
all kinds of considered items, namely metamodel, model, and JSON
schema, unless otherwise explicitly stated.
9 https://github.com/google/gson.
10 https://www.eclipse.org/modeling/emf/.

It is worth noting that this component is compliant with
a well-structured encoding scheme. In such a way, the pro-
posed tailored parsers follow the same structure during the
data gathering phase, i.e., they are agnostic from the under-
lying model artifact. The generic encoding scheme is defined
as follows:

instance id, (〈relationship tuple〉)∗ (5)

where the instances are represented by their identifier (e.g.,
name) and the relationships are tuples that encode related
concepts depending on the notation. It is worth noting that a
tuple can be composed of two or three elements, according
to the considered modeling artifact.
Metamodel parsing. Starting from a metamodel, Ecore
parser excerpts the list of metaclasses and their struc-
tural features, i.e., attributes and references. In particular,
the metaclass name identifies the corresponding metaclass
instance while each relationship is represented as a triple
defined as follows:

metaclass-name (〈Name,Type, [reference | attribute]〉)∗ (6)

where Name is the name of the structural feature, Type
characterizes the type element, e.g., EString or EInt,
and Relation identifies the type of relation between the ele-
ment and the class, i.e., attribute or reference. Following
the aforementioned scheme, the Actor metaclass described
in Fig. 1a is encoded as Actor (name, EString,
attribute). These elements improve MORGAN ’s rec-
ommendation capabilities as they enable the modeler to add
further information to the partial model.

123

https://github.com/google/gson
https://www.eclipse.org/modeling/emf/

MORGAN: a modeling recommender system based on graph kernel

MoDisco model parsing. MoDisco parser is used to extract
valuable data from models. In particular, similar to Ecore
parser,MoDisco parser explores xmi trees to elicit valuable
elements, i.e., each MoDisco model is represented as a list
of Java classes followed bymethod definitions and field dec-
larations. The class name represents the instance identifier
while each relationship is represented as a triple defined as
follows:

class-name (〈Name,Return type, [method | field]〉)∗ (7)

where Name is the method or field name, Return type is
the method or field type, and Relation identifies the type of
relation between the class members, i.e., method or field,
and the class. For instance, the signature of the getError
method belonging to LateBinding class depicted in Fig. 2a is
translated as LateBinding (getError, EString,
method).
UMLmodel parsing. To extract the same type of information
frommodels belonging to ModelSet, a UML parser has been
conceived by exploiting EMF utilities. It is worth noting that
the structure of the parser is similar to the previous ones, i.e.,
it navigates the tree structure of the UML models given as
input. To be consistent with the parser requirements, we elicit
properties and operations for each UML class. The encoding
scheme for a single UML class is the following:

class-name (〈Name,Type〉)∗ (8)

where Name is the name of the property or operation of the
class while Type can be operation or property. For instance,
a UML class named Teacher with the property name and
the operation setMark is translated into Teacher (name,
property) (setMark,operation).
JSON schema parsing. Similarly to the metamodels that pro-
vide the notation to express models, JSON schema [7] is a
dedicated language to define and validate JSON documents.
A JSON schema document consists of two main types of
schemas, i.e., BooleanSchema and ObjectSchema. In the
scope of this paper, we focus on the latter that defines the
hierarchical structure of the schema, including (i) the Type
that could be a SimpleType or object, and (ii) a list of Key-
word elements that defines the properties of the object. Each
element of this list contains a KeySchemaPair that explicitly
defines the structural features of an object or the primitive
type. In this case, we opt for ObjectSchema name as the
instance identifier, whereas the list of properties identified
by KeywordsPair is used to identify the relationship tuples.
We encoded such data as following:

ObjectSchema-name (〈name, [object | int | string |...]〉)∗
(9)

If Type is a primitive type, e.g., string or Boolean,
Keywords are mapped to attributes, otherwise they are con-
tained objects. In such a way, the JSON schema parser is
used to extract pairs consisting of ObjectSchema and con-
tained properties. This parser is capable of extracting the
same type of information compared to the aforementioned
ones. An excerpt of the encoding of locations highlighted
in Fig. 3a can be represented as Locations (name,
string)(longitude, int)(mentions, object).

3.2 Graph encoder

The next step is to build graphs from textual files produced
by the parsing phase. In the former version of the tool [6], the
artifact Encoder component applied a standard NLP pipeline
composed of three main steps, i.e., stop-words removal,
string cleaning, and stemming. In this extension, we employ
the lemmatization strategy instead of stemming by adopting
the well-founded algorithm based on WordNet11 The ratio-
nale behind this choice is that the former strategy is a process
for removing the commoner morphological and inflexional
endings from English words [16]. However, this could lead
to incorrect meaning and spelling since the semantic is not
considered at all. Meanwhile, lemmatization considers the
context and extracts the lemma of each word, i.e., its base
form. To enable this process, a large thesaurus of English
terms is needed since the lemmatizer component involves
the morphological analysis of each word. In the scope of this
paper, we make use of the WordNet Lemmatizer utility pro-
vided by the nltk Python library12 to extract the lemma from
each analyzed term. Afterward, a corpus of words is created
from scratch by inserting the preprocessed model elements
iteratively. It is worth noting that a single element is not
inserted if it is already included in the dictionary. In such
a way, MORGAN encodes relevant information related to
the application domain by embedding key features extracted
from actual models. Furthermore, this component employs
NetworkX,13 a Python library that creates nodes and edges
considering the structure of the parsed model. According to
the format shown in Eq.5, each model is represented by a
list of connected graphs in which each class is linked with
corresponding elements.

An explanatory graph obtained by the Encoder component
is depicted in Fig. 5. It is an encoding fragment of the meta-
class Actor shown in Fig. 1b. In particular, the structure of the
model is encoded by adding edges among the class Actor and
the stemmed version of its attributes and references namely
Name, Description, Type, and Extends, though such type of
graph does not resemble the semantic relationships occurring

11 https://wordnet.princeton.edu/.
12 https://www.nltk.org/_modules/nltk/stem/wordnet.html.
13 https://networkx.org/.

123

https://wordnet.princeton.edu/
https://www.nltk.org/_modules/nltk/stem/wordnet.html
https://networkx.org/

C. Di Sipio et al.

Fig. 5 Example of a stemmed graph

in the actual model, i.e., an attribute can refer to a missing
metaclass. Nonetheless, analyzing the structure of the model
is enough to create the vocabulary that represents the knowl-
edge base of the underpinning model. It is worth mentioning
that the same format is kept to perform the final recommen-
dations, thus delivering additional information about the type
of the model element to the user.

3.3 Matrix encoder

At this point, the Matrix Encoder component counts the
occurrences of the items belonging to the obtained graphs.
Each itemhas three required features: i.e., adjacency_matrix,
node_labels, and edge_labels. The first feature is required
to ensure that the graph is valid from the structural point
of view. The second and third features are not mandatory
in some certain contexts. For instance, e.g., edge_labels is
not required in case the kernel algorithm does not employ
them in the recommendation phase.14 To feed the graph ker-
nel, Matrix Encoder assigns a unique ID to each node of the
graph to build a term-frequency matrix. In such a way, the
most frequent items are considered at recommendation time.
This component eventually calculates the sum of products
between frequencies of common occurrences by employing
the diagonal method to perform the dot product operation. It
is worth mentioning that this strategy speeds up the diagonal
calculation to reduce the computation time.

14 In the scope of the paper, we do not employ the edge_labels feature
since homogeneous graphs are considered.

3.4 Vertex histogram kernel

At this point, the underpinning engine can be fed with the
computed graphs to retrieve the missing artifacts. To this
end, MORGAN relies on the Grakel Python library that
provides several graph kernel implementations [17]. We
compute graph similarity by comparing the input model with
all the elements in the training set. As discussed in Sect. 2,
we replaced theWLOAkernel [14] employed in our previous
work with the Vertex Histogram kernel strategy as described
in Sect. 2.2. It is important to remark thatwe added theMatrix
encoder component that produces an adjacency matrix given
the produced graphs. In such away, the structure of the graphs
is preserved, thus enabling the computation of the kernel sim-
ilarity.

The rationale behind the selection of Vertex Histogram
is as follows. The implemented version of the algorithm is
linear in the number of vertices of the graph.15 Moreover,
through an empirical evaluation, we realized that it is much
more timing efficient than the graph kernel adopted in the
former version of MORGAN, i.e., WLOA strategy. Thus,
VertexHistogramhas been chosen to compute the similarities
among the nodes in graphs.

The employed kernel eventually retrieves an ordered list
of modeling artifacts stored in the training set ranked by sim-
ilarity scores. These values are computed by exploiting the
Vertex histogram algorithm as described in Eq.4. In practice,
given the context of the modeler encoded as a graph, MOR-
GAN compares it with the graphs extracted from the training
set. At the end of the process, a similarity score is assigned for
each comparison and a ranked list of graphs is produced. The
top-5 similar elements are extracted from this set to support
two kinds of recommendation: (i) specification of missing
structural features; and (ii) generation of (meta)classes that
can be used to enhance the artifact under specification with
further concepts. It is worth noting that the whole process
is adopted for each type of model artifact, i.e., metamod-
els, Java models, and JSON schema. This means that there
are three different training processes in which MORGAN
learns a specific set of features needed to recommend the
proper items.

Being built on these components, MORGAN provides
recommendations including both metamodels, models, and
JSON schema. The succeeding subsection introduces an
explanatory example to show to which extent MORGAN is
useful for a metamodeling task.

15 https://ysig.github.io/GraKeL/0.1a8/kernels/vertex_histogram.
html?highlight=vertex%20histogram.

123

https://ysig.github.io/GraKeL/0.1a8/kernels/vertex_histogram.html?highlight=vertex%20histogram
https://ysig.github.io/GraKeL/0.1a8/kernels/vertex_histogram.html?highlight=vertex%20histogram

MORGAN: a modeling recommender system based on graph kernel

Fig. 6 Dα dataset creation and overall evaluation process

Table 1 Retrieved items for the UmlDSL metamodel

Context Recommended item

Step Attribute finalState:EString reference
continuation:Step reference
initialState:initState reference
finalStates:FinalState

Flow Attribute finalizeFlow:EBoolean attribute
eventPatternId:EString reference
initialState:initState reference
finalStates:FinalState

Step Metaclass StepAlternative:EClass
metaclass Automaton metaclass FSM
metaclass mFSM

3.5 Explanatory example

Table 1 shows the suggested structural features for the
UmlDSL metamodel depicted in Fig. 1a. We consider two
different metaclasses extracted from the artifacts under con-
struction, i.e., Flow and Step. From the ranked list of
structural features, we elicit the most relevant ones given
the recommendation context, i.e., the bold items in Table 1.
In particular, the reference continuation is the recommended
item that the modeler can use to complete the partial meta-
class Step. Similarly, the metaclass Flow could be enhanced
with the finalizeFlow attribute. Concerning the recommen-
dation of new classes, we consider again the class Step as
testing. In this case, the retrieved item is the StepAlternative
metaclass that can enrich the metamodel, even though it is
not included in the complete one. We see that MORGAN
produces items pertinent to the modeler’s context.

Altogether, it is evident that the recommended items
are helpful as they are relevant to the given artifact. In
this respect, we conclude that for the explanatory example,
MORGAN is able to provide themodeler with useful recom-
mendations to complete the given metamodeling activities.
In the next sections, we present the experimental method-

ologies as well as an empirical evaluation of the tool using
real-world datasets to study its feasibility in practice.

4 Evaluation

We describe in detail the research objectives and the exper-
imental configurations used to study MORGAN ’s perfor-
mance. First, the research questions that we address in this
paper are presented in Sect. 4.1. Afterward, in Sect. 4.2 we
describe the datasets used in the evaluation. Finally, the val-
idation methodology and evaluation metrics are detailed in
Sects. 4.3 and 4.4, respectively.

4.1 Research questions

The following research questions are addressed to study the
new version of MORGAN , comparing it with the previous
one [6].

– RQ1: Does the preprocessing step contribute to a per-
formance gain of MORGAN ? We investigate whether
the introduced preprocessing augmentation improves the
overall performances in terms of identified metrics, i.e.,
success rate, precision, recall, and F-measure.

– RQ2: How does the vertex histogram kernel function
impact on the computational efficiency? In an attempt
to extend the MORGAN tool, we employed a tailored
graph kernel based on the term-frequency matrix as the
underlying recommendation engine. This research ques-
tion aims to validate if the proposed mechanism helps
MORGAN reduce the time required to perform the rec-
ommendations.

– RQ3:Howeffective isMORGAN at recommending JSON
schema elements? To assess if the tool is able to support
different application domains, we evaluate by consider-
ing a curated dataset composed of JSON schemamodels.

123

C. Di Sipio et al.

Such type of data is widely used in MDE, and thus we
suppose that the capability to work with JSONwill allow
MORGAN to gain popularity in real-world scenarios.

– RQ4: How is MORGAN ’s performance changed when
working on ModelSet, a benchmark dataset of meta-
models and UML models? To further study MOR-
GAN ’s capabilities in recommendingmodeling artifacts,
we considered two additional datasets extracted from
ModelSet[10], a recently collected set ofmetamodels and
models. In such a way, we can measure how the size of
the data affects the tool’s overall performance.

4.2 Datasets extraction

Recent studies in the domain provide large, curated col-
lections of models and metamodels, leveraging to support
ML-based tasks, e.g., classification ofmodels and prediction
of relevant modeling artifacts. In this extension, we con-
sider five different datasets, which are named Dα , Dβ , Dγ ,
Dδ , and Dε . The first two datasets, i.e., Dα , and Dβwere
already used to evaluate the former version of MORGAN
[6], and we re-used them to evaluate the fine-tuned version of
MORGAN proposed in this extension. Furthermore,with the
aimof showcasing the extensibility of our approach,wemake
use of three additional datasets, namely Dγ , Dδ , and Dε . The
first one is composed of JSON schema crawled fromGitHub.
Meanwhile, Dδand Dεhave been extracted from ModelSet
[10], a curated collection of models and metamodels. The
selected datasets are explained in detail as follows.
✧ Concerning Dα , we extracted model representations of
popular Java projects stored in the Maven repository16 to
build the Dαdataset. Thewhole process to obtain the required
data is depicted in Fig. 6a. First, we selected the top eight
popular categories, including Apache, Build, Parser, SDK,
Spring, SQL, Testing, and Web server, among the most pop-
ular ones according to the Maven Tag Cloud.17 Then, for
each category, we crawled around the top 100 popular Java
artifacts.

The whole process aims to create a balanced dataset com-
posed of good-quality models. In such a way, we aim to build
a curated collection of models that share common features
as much as possible. Having such similarities could improve
the overall accuracy even though this cannot be granted at
the beginning of the process. Figure7 shows the statistics
for the extracted models in Dα . In particular, the x, y, and
z axes correspond to the number of classes, the number of
methods, and the number of fields of the mined artifacts,
respectively. Moreover, the colors of dots are used to rep-
resent the categories. It is evident that most of the models

16 https://mvnrepository.com/.
17 https://mvnrepository.com/tags.

Fig. 7 Dαfeatures

Fig. 8 Dβ features

Fig. 9 Dγ features

contain a small number of methods and classes, i.e., lower
than 300 and 200, respectively. There is only one model with
more than 1,000 fields, 390 classes, and 690 methods. The
corpus of JAR files has been collected by employing Beauti-
ful Soup,18 a Python scraping library. Then, Javamodels have
been generated from the collected corpus usingMoDisco, an
extensible framework that allows us to convert JARfiles back
to models. Since they are Java models, we extracted three
different model elements from the MoDisco models, i.e.,

18 https://www.crummy.com/software/BeautifulSoup/bs4/doc/.

123

https://mvnrepository.com/
https://mvnrepository.com/tags
https://www.crummy.com/software/BeautifulSoup/bs4/doc/

MORGAN: a modeling recommender system based on graph kernel

Fig. 10 Dδfeatures

Fig. 11 Dε features

classes, methods, and fields. Finally, a model parser is used
to represent the model as defined in Sect. 3.1. In the end, we
collected a set of 581 unique model representations from the
MVN Repository belonging to the top categories.
✧ To generate Dβ , starting from an original set consisting
of 555 labeled metamodels with nine different categories
[18], we extracted metaclasses, attributes, and references
from each Ecore file using the Eclipse EMF utilities. More-
over, different quality filters have been also applied on the
data, attempting to improve MORGAN ’s performance. In
particular, we removed metaclasses having less than two ele-
ments, either attributes or references. Since each metamodel
is encoded as a set of graphs, having small ones may harm
the overall performance. Thus, we eliminated metamodels
belonging to the Bug category, which has only eight meta-
models. Possible duplicate classes are also excluded to avoid
any bias. The final dataset consists of the following eight cat-
egories: Build, Conference, Office, PetriNets, Request, SQL,
BibTex, and emphUML. Figure8 reports a summary related
to the characteristics of Dβ including the number of meta-
classes (the x axis), the number of references (the y axis),
and the number of attributes (the z axis). Like in Fig. 7, the

category of metamodels is represented using colors. Though
we do not directly employ the category to produce recom-
mendations, it includes similar metamodels which help to
represent the application domain.
✧ As discussed in Sect. 2.1, the definition of a JSON schema
falls under the umbrella of modeling activity. In the light of
such rationale, we introduced an additional dataset, i.e., Dγ ,
consisting of JSON schema mined from GitHub. Due to lim-
itations imposed by the GitHub REST API [19], we mined
a publicly-available GitHub archive dataset freely accessible
inGoogle BigQuery [20]. First, we querymetadata searching
for files with .json extension across the repositories in Ref.
[20], restricting the search to .json files whose pathname con-
tains the string schem. The rationale behind it is twofold: (i)
it limits the amount of data processed by the query on the
GitHub archive dataset to avoid exceeding the free monthly
per user quota (1TB) [20]; (ii) we aim to infer insights on
.json files by its pathname. We then filtered out dangling
entries, i.e., pairs where pathnames point to .json files that
no longer exist, and existing .json files that do not contain
the $ schema keyword. Then, duplicates removal, parsing,
and conformance check are performed.

The duplicates removal step computes a hash value for
every mined file based on its content. The obtained hashes
are used to build a hashmap where the key is the hash itself,
and the value is the corresponding file. If a duplicated key
occurs in the map, we assume that the corresponding .json
file is a duplicate and we drop it. We distinguish between
parsing and conformance check steps. The former checks if
the JSON file is correctly serialized, while the latter validates
the conformance of a schema considering its meta-schema
definition.19 Finally, we collected 2,872 distinct and valid
JSON schemes, whose features are shown in Fig. 9.
✧ ModelSet is a collection of 5,466 Ecore metamodels and
5,120 UML models manually labeled by the authors [10].
This curated collection has been used in practice to enhance
the performance of an existing search engine for models,
namely MAR [21]. As shown in our previous work [22],
the quality of the input data plays a key role in the per-
formance of many model assistants. In particular, curated
datasets with more similar metamodels allow recommender
systems to improve their prediction performance, even if the
size of such datasets is smaller than that of those randomly
collected. Therefore, we make use of the provided Python
API20 to filter the initial list of artifacts by a tailored Mod-
elSet query with the following parameters:

remove -duplicates = True ,
remove -categories = [’dummy ’, ’unknown

’],
min -occurrences -per -category = 7,

19 https://json-schema.org/specification.html.
20 https://github.com/modelset/modelset-py.

123

https://json-schema.org/specification.html
https://github.com/modelset/modelset-py

C. Di Sipio et al.

Table 2 Configuration settings

Configuration Lemmatizer Vertex histogram

C1 ✗ ✗

C2 ✓ ✗

C3 ✗ ✓

C4 ✓ ✓

languages = [’english ’]

Eventually, we extracted Dδ and Dε and their features
are shown in Figs. 10 and 11, respectively. In particular, we
obtained 1247 metamodels and 849 UML models extracted
from ModelSetusing the aforementioned quality filter. For
all considered datasets, we get rid of small (meta)models
and keep only the larger ones since MORGAN is a data-
driven approach that heavily relies on the quality of training
data.

4.3 Settings

In the original study [6], we assessed the prediction per-
formance of MORGAN by resembling the behaviors of a
modeler21 working at different stages of a modeling project
m, by involving different configurations during the exper-
iments [23]. To this end, we split m and use the rest as
the modeler’s context by varying two parameters, i.e., the
number of considered classes and the number of the corre-
sponding structural features. Starting from these definitions,
we create four configurations to simulate different stages of
modeling, i.e., from an initial specification to a mature one.
We realized that MORGAN is capable of assisting the mod-
eler in all considered scenarios, and the best accuracy scores
were obtainedwhen amature context is considered [6]. In this
work,we focus on assessing the contributions of the novelties
introduced at the level of the recommendation engine, i.e.,
the additional preprocessing step and the vertex histogram
kernel function. In particular, we are interested in measuring
the contribution of each component separately and compar-
ing the achieved resultswith the former version ofMORGAN
.22 Table 2 summarizes the identified configuration by con-
sidering the aforementioned components.

Configuration C1 represents the MORGAN ’s original
setting, equipped with a standard NLP pipeline and the
Weisfeiler–Lehman kernel. Starting from this, we derive
other configurations, i.e., C2 and C3 by introducing the

21 For the sake of presentation, the two terms “modeler” and “devel-
oper” are used interchangeably in the scope of this paper.
22 Replicating the experiments with all the configurations is out of the
scope of this paper. Thus, we selected the ones that lead to a better
accuracy, and used it to evaluate the novel aspect introduced in this
extension.

lemmatization step and anovel kernel similarity, respectively.
Finally, by C4 we combine all the newly introduced mech-
anisms to assess how the new tool advances compared to
its preceding version by analyzing two different dimensions,
i.e., the accuracy in terms of relevant results, and the deliv-
ery time. The former might benefit from the improvement of
preprocessing phase as the data-driven tools strongly rely on
input data to compute the outcomes. In contrast, the latter is
affected by the complexity of the employed kernel function;
thus, improving this component could speedupboth the train-
ing and the query phases. In this respect, we expect that the
Lemmatizer component increases the quality of the recom-
mended items while the computation time might be reduced
by exploiting the Vertex Histogram kernel. To conduct the
experiments, we split a dataset into two independent parts,
namely a training set and a testing set. In practice, the training
set represents the (meta)models that have been collected ex
ante, they are available at developers’ disposal. The testing
set represents the metamodel being developed, or the active
project. In this way, our evaluation simulates a real-world
scenario: the system is supposed to generate recommenda-
tions for the active metamodel based on the data mined from
a set of existing metamodels. In the evaluation, we adopted
the k-fold cross-validation technique widely used in eval-
uating ML-based applications [24]. The overall process is
described in Fig. 6b, and it is applied on both the metamodel
dataset and the model one presented in Sect. 4.2. Given the
initial datasets, the splitting data operation is performed to
obtain training and testing sets. In practice, the former repre-
sents the models that have been collected a priori to build the
vocabulary (see Sect. 3.2, while the latter has been split into
GT graphs and query graphs. In our previous work [6], we
already evaluated the performance MORGAN with differ-
ent GT and query sizes to mimic the behaviors of a modeler
working at different stages of a modeling project. In this
paper, we resemble the situation where the metamodel under
construction is almost complete, i.e., the modeler already
defined the two third of classes and structural features. In
particular, a single query graph represents the active context
of the modeler who is defying classes and structural features
for a specific model. Meanwhile, the GT graph is the elicited
part extracted from the original model that should be defined
by the modeler to complete the partial model. Even though
this splitting strategy could lead to possible inconsistencies,
we carefully encode the original models to avoid any broken
references.

4.4 Metrics

Given a set of |I | testing items,23 and a partial item i,
MORGAN produces a ranked list of N elements, i.e.,

23 We use items to refer both to metamodels and models, for the sake
of presentation.

123

MORGAN: a modeling recommender system based on graph kernel

RECN (i). We evaluate the system’s performance by com-
paring such a list with the ground-truth data GT(m). First,
let us call match(i) = |GT(i) ∩ RECN (i)| the number of
correctly retrieved items, then we use the following three
metrics: Success rate, Precision, Recall, and F-measure met-
rics, defined as follows [23]:

• Success rate measures the ratio of testing items getting
at least a match in the recommendation list, to the total
number of testing items:

success rate = counti∈I (match(i) > 0)

|I | (10)

• Precision is the ratio of number of matched elements to
the number of recommended items:

precision = match(i)

N
(11)

• Recall is the ratio of the ground-truth items being found
in the top-N recommended ones:

recall = match(i)

GT(i)
(12)

• F-measure is computed as the harmonic average of pre-
cision and recall:

F-measure = 2 ∗ precision ∗ recall

precision + recall
(13)

Recommendation time is a well-known delivery qual-
ity factor to evaluate recommender systems [25]. Therefore,
we are interested in measuring the computational efficiency
of the approach by computing the time needed to perform
the whole recommendation activity, including the training
and the testing phases. In particular, the two operations are
defined as follows:

• Preprocessing time is required to encode the input data
as well as extract relevant features. Since MORGAN is
a data-driven tool, this phase is crucial to achieving good
recommendation scores.

• Testing time Once being trained, the system delivers the
computed recommendation given an input context, i.e.,
a model under construction. This operation measures to
what extent MORGAN delivers relevant artifacts for a
given context on average.

The time required for all the aforementioned operations
is measured using a laptop with Intel i58250U CPU @
1.60GHz, 16GB RAM, and Ubuntu 16.04 OS.

5 Experimental results

To investigate the potential contributions of the conceived
extension, we replicate the study conducted in the origi-
nal MORGAN paper [6] by analyzing the performances
obtainedwith the abovementioned enhancements, i.e., lemma-
tization preprocessing and the Vertex Kernel strategy. The
evaluation adheres to the configuration settings discussed in
Sect. 4.3 to avoid anybias in the comparison.We investigate if
the mechanisms presented in Sect. 3 contribute to an increase
in the overall accuracy in terms of the selected metrics, i.e.,
success rate, precision, recall, and F-measure, as well as in a
gain considering the delivery time. The experimental results
are reported using violin boxplots, representing both boxplot
and density traces. This aims to bring a more informative
indication of the distribution’s shape [26], enabling us to
comprehend better the magnitude of the density. To this end,
we report and analyze the experimental results by answer-
ing the three research questions introduced in Sect. 4.1. In
particular, Sect. 5.1 presents the results obtained when the
novel NLP preprocessing step is considered. We analyze the
gain in computation time obtained by using theVertexKernel
similarity in Sect. 5.2. The capability to supporting the com-
pletion of JSON schema is eventually discussed in Sect. 5.3.

5.1 RQ1: Does the preprocessing step contribute to a
performance gain ofMORGAN ?

To assess the contribution of the lemmatizer component,
we compare the former version of the tool with MORGAN
equipped with the new NLP module, namely configurations
C1 and C2, respectively, considering the two recommenda-
tion tasks related to the modeling activity, i.e., providing
model classes and class members.
Recommending model classes. The comparison between the
two identified configurations ofMORGAN employed to sup-
port model classes recommendation is depicted in Fig. 12.
It is evident that by Configuration C2, MORGAN increases
the overall accuracy even though the measured improvement
is negligible in terms of the considered metrics, i.e., the dis-
tribution of the relevant items are similar to the preceding
version of MORGAN . For instance, the violin boxplots rep-
resenting the success rate values shown in Fig. 12a span from
0.10 to 0.60 for both the considered configurations. Despite
this, by C2, MORGAN slightly improves the relevance of
the delivered items since they are more uniformly distributed
than the ones retrieved by C1. This finding is confirmed by
analyzing the values obtained by the other metrics, i.e., pre-
cision, recall, and F-measure.WhileMORGAN suffers from
some degradation of performance in terms of precision with
C2,wemeasure higher values for recall,meaning that the new
version of the tool reduces the number of false negatives. On
the one hand, the violin boxplot for C1 shown in Fig. 12b

123

C. Di Sipio et al.

spans from 0.0 to 0.20 while the one representing results for
C2 reaches 0.10 as a maximum value. On the other hand,
Fig. 12c shows that MORGAN obtains a better recall by C2

compared to C1, i.e., the variance of the results is reduced
by adopting the lemmatizer component. The F-measure val-
ues depicted in Fig. 12d confirm that the recommendation of
model classes benefits from the enhancements, i.e., recall
mitigates the lower results obtained by the precision.
Recommending class members. The improvement is more
evident by analyzing the results obtained in the second mod-
eling task, i.e., the recommendation of class members, as
depicted in Fig. 13. Take as an example, the obtained suc-
cess rate depicted in Fig. 13a ranges from 0.30 to 0.80 and
from 0.40 to 1.00 by using C1 and C2, respectively. This
demonstrates that the lemmatizer component is capable of
increasing the relevance of the returned items as the success
rate is increased by 10% on average. Such an improvement
is confirmed by analyzing the results obtained for precision,
recall, and F-measure shown in Fig. 13b, c, and d, respec-
tively.

More specifically, the precision reaches the maximum
value of 0.60 when C2 is considered. Meanwhile, the former
version of MORGAN represented by C1 earns a maximum
precision of 0.50 even though the distribution of the items is
similar in terms of variance. Similarly, the new NLP compo-
nent is capable of increasing the recall by 10% on average
with respect to the former version of the tool represented by
C1’s violin boxplot. Overall, adopting C2 facilitates a bet-
ter performance although the delta is minimal. This issue has
been already threatened in the original work by analyzing the
similarity among the models belonging to Dα .24 We realized
that the similarity of the considered models is very low, thus
undermining the capability of the approach to be more effec-
tive. This is quite expected asMORGAN is a data-driven tool
that strongly relies on the quality of the input data. Therefore,
introducing an additional preprocessing step contributes to
lead better performance even with not remarkable results.
Recommending metaclasses. Similar to the previous analy-
sis, Fig. 14 shows the comparison of the old MORGAN ,
i.e., C1 and the new one, i.e., C2 in recommending meta-
classes. It is clear that the proposed approach performs better
in both recommendation contexts, i.e., all the metrics are
improved by 10% on average. By considering the recom-
mendation ofmetaclasses, the boxplots show thatMORGAN
delivers more relevant items compared to the former version,
i.e., the overall variance is reduced by adopting the enhanced
approach. Such an improvement becomes evident by analyz-
ing the success ratemetric shown in Fig. 14a.While using the
original approach the corresponding violin plot spans from

24 In the scope of the paper,we do not report the similarity values among
the considered models. The interested readers are kindly referred to the
original version of MORGAN [6] for more detail.

0.20 to 0.80, the recommended metaclasses are concentrated
in the upper part of the diagram by adopting the extended
version of MORGAN . This means that the variance of the
elements is reduced since they are distributed from 0.30 to
0.90.

Similarly, the precision, recall, and F1-measure values
computed with C2 are more equally distributed with respect
to the results obtained in the previous work, represented by
C1. For instance, the distribution of the precision values pre-
sented in Fig. 14b is centered around 0.20 using C1, implying
that most of the metaclasses are not suitable for a given con-
text. In contrast, adopting C2 improves the quality of the
retrieved artifacts, i.e., the corresponding violin span homo-
geneously. The same trend can be observed for the other
metrics, i.e., recall and F-measure shown in Fig. 14c and
d. Altogether, this means the new preprocessing component
contributes to increasing the overall quality of the retrieved
artifacts.
Recommending structural features. Similar to Dα , the con-
tribution of the advanced preprocessing step is more evident
when structural features are considered. In particular, the suc-
cess rate values obtained by MORGAN equipped with the
lemmatizer component strongly confirm our findings, since
the scores are concentrated on the [0.60; 1.00] range. Mean-
while, adopting C1, i.e., the former version of MORGAN ,
produces less relevant artifacts as the corresponding boxplot
is scattered from 0.0 to 1.00 as shown in Fig. 15a. Roughly
speaking, this means that the extended version of MORGAN
comes in handy for a larger set of testing contexts, improv-
ing the overall quality of suggested structural features. The
other considered metrics remark this improvement, i.e., the
distribution of values obtained with MORGAN are greater
than the ones of the original work, though the delta is less
noticeable compared to the success rate metric. As shown
in Fig. 15(b), the precision values obtained by using C2 are
very similar to those computed by using C1, i.e., the former
version of MORGAN . Nonetheless, we observe that most
of the values are centered around 0.50 and 0.60 considering
C1 and C2, respectively, meaning that the lemmatizer com-
ponent improves the quality of the retrieved items even in a
small percentage of cases. This finding is confirmed by the
recall values as the violin plot depicted in Fig. 15(c) have
almost a similar shape. Figure15(d) eventually summarizes
the obtained enhancements by showing the F-measure results
for the two examined configurations. It is worth noting that
C2’s violin plot reaches 0.85 as a maximum while C1 distri-
bution stops at 0.80. This can be explained by observing the
recall boxplot since the one representing precision has the
same shape. Thus, the decrease of the variance in the rec-
ommended items distribution is almost led by recall, as the
F-measure score represents the harmonic mean of the two
aforementioned metrics.

123

MORGAN: a modeling recommender system based on graph kernel

Fig. 12 Evaluation scores for recommending model classes on Dα

Fig. 13 Evaluation scores for recommending class members on Dα

Fig. 14 Evaluation scores for recommending metaclasses Dβ

To better understand the contribution of the new config-
uration, we compute two widely used statistical tests on the
two populations, i.e., Wilcoxon rank sum test adjusted p-
values and Cliff’s d. Table 3 summarizes the obtained results
considering the average values of the metrics for both Dαand
Dβdatasets.Concerning the former,weobserve that the intro-
duction of the new kernel has a negligible effect on the results
as confirmed by the two statistical tests. Furthermore, the

aggregated precision, recall, and F1 values are almost the
same in both cases, meaning that adopting Configuration
C2 does not lead to a better performance. Such a negative
result can be explained by the heterogeneity of the Java
models belonging to Dα . Essentially, the introduction of the
new kernel is not enough to obtain better results when Dαis
considered. In contrast, we observe an improvement when
MORGAN is equipped with the Vertex Histogram kernel on

Fig. 15 Evaluation scores for recommending structural features on Dβ

123

C. Di Sipio et al.

Table 3 Average prediction scores, Wilcoxon rank sum test adjusted p-values and Cliff’s d results

Dα Dβ

Class members Classes Structural features Metaclasses

C1 C2 C1 C2 C1 C2 C1 C2

Avg. Success rate 0.36±0.48 0.36±0.47 0.22±0.41 0.21±0.41 0.97±0.15 0.99±0.09 0.66±0.47 0.73±0.44

Avg. Precision 0.05±0.13 0.06±0.13 0.04±0.11 0.04±0.09 0.48±0.30 0.70±0.28 0.50±0.43 0.56±0.41

Avg. Recall 0.03±0.12 0.03±0.08 0.08±0.20 0.07±0.20 0.40±0.26 0.74±0.25 0.41±0.38 0.51±0.38

Avg. F-Measure 0.03±0.10 0.03±0.07 0.04±0.10 0.04±0.09 0.57±0.23 0.86±0.22 0.39±0.40 0.54±0.42

Wilcoxon p-value2 0.6486 0.2149 0.0856 0.6812

Cliff’s d results2 −0.01295 (n)1 −0.0122 (n)1 −0.0142 (n)1 −0.0877 (n)1

1 magnitude values l:large, s:small, n:negligible
2 Both Wilcoxon rank sum test adjusted p-values and Cliff’s d results are computed on the success rate scores

Dβ , i.e., MORGAN achieves better average success rate,
precision, and recall scores than the ones achieved from the
previous version for both metaclasses and structural features
recommendations. Though the improvement is not statisti-
cally significant, the aggregate values show that MORGAN
equipped with C2 leads to better results by considering a
more curated dataset.
Answer to RQ1. Compared to the former version, MORGAN
improves its performance by adopting refined preprocessing strate-
gies, i.e., lemmatization instead of stemming. Though such
improvements impact mostly on success rate, the enhanced pre-
processing increases the probability of retrieving valuable artifacts.

5.2 RQ2:How does the vertex histogram kernel
function impact on the computational efficiency?

With the aim of assessing to what extent the time of rec-
ommendations can be improved, we compared the former
version of the system with the one that exploits the Vertex
Histogram kernel as a recommendation engine, i.e., consid-
ering C1 and C3. To this end, we analyze the computational
efficiency in terms of (i) training time needed to learn the
encoded features in the models and (ii) testing time, namely
the time needed to get a set of recommendations given the
modeler’s context. Similar to the previous research question,
we conducted such an evaluation by considering the two
datasets of the original work, i.e., Dα and Dβ . Furthermore,
we investigate how the type of recommended item could
affect the system from the computational point of view, i.e., if
recommendingmetamodel classes or their structural features
can lead to a different execution time. Table 4 summarizes the
results of the comparison between the two aforementioned
configurations when models are considered.

The measured time shows that augmenting MORGAN
with Vertex Histogram results in better computational effi-
ciency. Considering the training phase, the benefit of adopt-
ing the novel kernel is more evident for the recommendation
of class members, i.e., the required time decreases from

Table 4 Timing performance on Dα (seconds)

Classes Class members

Operation C1 C3 C1 C3

Preprocessing 7570 1242 7815 923

Testing 689 101 868 166

Single rec 4.0 0.6 5.0 1.0

The numbers printed in bold correspond to the best scores

7,815 to 923s on average. Furthermore, this operation takes
7,570 and 1,242s for model classes when C1 and C3 are
enabled, respectively. The Vertex Histogram contributes also
to reducing the whole testing time, i.e., Configuration C3

takes 101 and 166s for classes and their members, respec-
tively. Meanwhile, the former version of MORGAN that
adopts C1 requires 689s to recommend model classes and
868s for the considered members. Furthermore, we mea-
sure the time required to produce the recommendations for
a single model. It is evident that Vertex Histogram performs
better compared to the WLOA kernel, i.e., the needed time
decreases from 4 to 0.6 and from 5 to 1s for classes and
members recommendations, respectively.

Concerning Dβ , the results confirm that equipping MOR-
GAN with Vertex Histogram helps speed up the overall
recommendation process, i.e., MORGAN gets a better
prediction when running with C3 instead of C1 by both con-
sidered metrics. In particular, the time required using C1 for
the training phase is 120 seconds on average for the meta-
classes while adopting C3 needs 17 seconds considering the
same amount of data. Similarly, the same trend can also be
seen for structural features since MORGAN equipped with
the new kernel module reduces the whole training time from
153 to 51 seconds.

By the testing operation, the tool requires 14 and 9s when
C1 and C3 are adopted, respectively. It is worth mentioning
that the computed time is the same for both metaclasses and
structural features. This finding can be explained by consid-

123

MORGAN: a modeling recommender system based on graph kernel

Table 5 Timing performance on Dβ (seconds)

Metaclasses Structural features

Operation C1 C3 C1 C3

Preprocessing 120 17 153 51

Testing 14.0 9.1 14.0 9.1

Single rec 1.0 0.2 1.5 0.3

The numbers printed in bold correspond to the best scores

Table 6 Comparison between C1 and C3 considering Dα

Classes Class members

Metrics C1 C3 C1 C3

Success rate 0.21 0.23 0.63 0.64

Precision 0.03 0.05 0.27 0.29

Recall 0.08 0.09 0.10 0.11

F-measure 0.04 0.06 0.11 0.12

The numbers printed in bold correspond to the best scores

ering the average dimension of the metamodels belonging to
the Dβdataset, i.e., they include a small number of structural
features of each metaclass. Therefore, the recommendation
phase takes almost the same time for the two aforementioned
metamodel artifacts.

This claim is confirmed by analyzing the time needed for
a single recommendation, i.e., it is almost the same for a
single model considering both kernels. It is evident that C3

leads to better performances compared to the results obtained
by running MORGAN with C1. In particular, recommend-
ing a set of classes and structural features requires 0.2 and
0.3 s, respectively, by adopting C3. Meanwhile, MORGAN
equipped with the WLOA kernel takes 1.0 and 1.5 s on aver-
age for the two recommendation tasks (Table 5).

Altogether, Vertex Histogram improves the computation
efficiency in all the considered scenarios, i.e., the recom-
mendation of models and metamodels artifacts. However,
MORGAN ’s overall accuracy may decrease as we are
employing a different technique. Therefore, we replicate the
analysis conducted in the previous research question by com-
paring C1 and C3 in terms of the considered metrics, i.e.,
success rate, precision, recall, and F-measure. Table 6 shows
the comparison by considering the average values of themen-
tioned metrics considering models, i.e., Dα .

It is evident that the novel graph kernel preserves the over-
all accuracy of the original work, i.e., all the metrics are
improved on average. In particular, the introduction of Ver-
tex Histogram leads to better results in recommending the
two types of model artifacts, i.e., classes and their corre-
sponding members. For instance, the success rate measured
for model classes passes from 0.21 to 0.23 when C3 is con-
sidered. Similarly, the other metrics are improved by 1% on

Table 7 Comparison between C1 and C3 considering Dβ

Metaclasses Structural features

Metrics C1 C3 C1 C3

Success rate 0.60 0.62 0.72 0.78

Precision 0.30 0.33 0.46 0.49

Recall 0.44 0.45 0.31 0.32

F-measure 0.33 0.35 0.34 0.36

The numbers printed in bold correspond to the best scores

average with respect to C1. Similarly, MORGAN equipped
with the new kernel strategy achieves better performance
when class members are considered even though the delta is
negligible. Nonetheless, Vertex Histogram aims to improve
computational efficiency in the first place since better per-
formance in terms of observed metrics is obtained by means
of the new preprocessing component.

Table 7 confirms that MORGAN ’s prediction scores are
not hampered by the introduction of the new graph kernel.
The table shows that the examined metrics are improved
up to 2% apart from the success rate measured for struc-
tural features, i.e., its score reaches 0.78 using C3 while
using C1 yields 0.72 as the maximum. Such an improvement
can be explained by considering the strong similarity among
the considered metamodels. Altogether, the observed results
demonstrate that the contribution of the Vertex Histogram
nurtures better results with respect to accuracy alongside the
time required for the whole recommendation process.

Answer to RQ2. Equipping MORGAN with the Vertex Histogram
kernel helps improve the computation efficiency. Moreover, the
overall prediction accuracy has also been slightly enhanced, mean-
ing that the kernel strategy contributes to a performance gain, albeit
marginal.

5.3 RQ3: How effective is MORGAN at recommending
JSON schema elements?

To examine the generalizability of the tool, we assess
MORGAN ’s capability of supporting the two modeling
completion tasks over the Dγ dataset composed of JSON
schema, namely root properties and the nested ones that can
be mapped to metaclasses and structural features, respec-
tively, as discussed in Sect. 2.1. Thus, we conduct the same
evaluation presented in the previous subsections by using
the configuration that embodies the novel components pre-
sented in this extension, i.e., Configuration C4, that includes
the lemmatizer component and the Vertex Histogram kernel.
Recommending JSON root properties. Fig. 16 shows the
results obtained when MORGAN is employed to recom-
mend JSON schema properties given an incomplete model.
The success rate scores span from 0.2 to 1.00. This means
that MORGAN recommends at least one correct property

123

C. Di Sipio et al.

in almost all of the examined contexts. In contrast, we expe-
rience some performance degradation on the other metrics.
For instance, the precision boxplot ranges from 0.0 to 0.40,
i.e., relevant properties are recommended with a low proba-
bility on average. In this respect, these results are similar to
the ones obtained for the models belonging to Dα . This find-
ing is confirmed by the recall values as the number of items
properly delivered is higher, i.e., themaximumvalue reaches
0.60. The distribution of the F-measure values resembles the
precision ones, suggesting that false positives have a negative
effect on the overall performances. By carefully inspecting
the results, we observe that the Dγ dataset is very heteroge-
neous since all the schema have been extracted from GitHub
repositories. Thus, such degradation of performance is due
to the nature of the data even though the novelties introduced
in the approach mitigates this issue.
Recommending JSON nested properties. Fig. 17 summarizes
the results obtained by MORGAN in recommending nested
JSON properties. Similar to the two examined datasets in
Sect. 5.1, the tool obtains better results compared to the root
properties recommendations. For instance, the success rate
achieves 0.70 on average as we can observe from the cor-
responding boxplot. Furthermore, the majority of the values
span from 0.60 to 0.90, meaning that nested properties have
been recommended in most of the cases. A similar trend
can be observed by analyzing the precision violin plot even
though the average value is around 0.60. However, MOR-
GAN suffers from some degradation in performance in terms
of recall, i.e., the corresponding violin plot spans from 0 to
0.80,with an averagevalue of 0.30. In otherwords, the system
fails to detect false negatives when JSON nested properties
are considered. This impacts negatively on the F-measure
metric as the corresponding violin plot has a similar shape
compared to the recall one. Despite this, the conducted study
aims to demonstrate the capability of MORGAN in recom-
mendingdifferentmodeling artifacts other thanEcoremodels
and class diagrams. It is our firm belief that improving the
quality of the considered JSON schema will lead to a better
accuracy. For instance, we can enhance the feature extraction
process to include more relevant data embedded in a JSON
schema, e.g., the type of the properties.

At its current status, the system can provide (i) attributes
and relationships to enrich a class or (ii) a list of similar
classes considering the corresponding structural features. In
principle, we could adapt the conceived parser module to
extract relevant features from any kind of modeling artifacts.
Therefore, MORGAN can possibly support the completion
of a state machine model if being properly trained with mod-
els, i.e., a dataset composed of state machine models with
a decent number of transitions. However, the final accuracy
depends a lot on the quality of training data. Altogether, com-
pletion of state machine models is possible under certain
conditions, i.e., the availability of a proper dataset, and the

Table 8 Evaluation scores for Dδ

Metric Metaclasses Structural features

Success rate 0.62 0.59

Precision 0.34 0.15

Recall 0.45 0.28

F-Measure 0.31 0.15

Time (s) 0.04 0.03

refactoring of the parser component. This, however, needs to
be validated with real-world datasets, and we consider it as
our future work.

Answer to RQ3.MORGAN succeeds in supporting JSON schema
completion, though we experienced some degradation in perfor-
mance for some metrics, i.e., the recall scores are very low. Such
negative results might be mitigated by improving the quality of the
input schemas.

5.4 RQ4: How isMORGAN ’s performance changed
whenworking onModelSet, a benchmark dataset
ofmetamodels and UMLmodels?

To further study theMORGAN ’s performance, we extracted
two different datasets fromModelSet, namely Dδand Dε , by
using the providedAPI as described in Sect. 4.2. Table 8 sum-
marizes the results obtained by MORGAN on Dδ . Similar
to RQ3, we conducted the experiment for this research ques-
tion using C4. It is worth noting that the results are similar
to those obtained with Dα , meaning that the degree of sim-
ilarity among the artifacts is almost the same. Concerning
Dδ , MORGAN obtains better performance in recommend-
ing metaclasses, i.e., all the scores are higher compared to
the ones obtained for the structural features. In particular,
the recall score is 0.45 in recommending metaclasses, while
it is 0.28 for structural features. In other words, the number
of false negatives is fewer when metaclasses are considered.
Concerning the time for a obtaining a single recommenda-
tion, MORGAN is very fast, i.e., retrieving the suggested
item requires only 0.04 and 0.03 s for metaclasses and struc-
tural features, respectively. Nevertheless, the required time
strongly depends on the size of the considered artifacts, thus
leading to some scalability issues if a larger dataset is con-
sidered. In fact, MORGAN is faster on Dδcompared to
Dαbecause the considered metamodels are smaller in terms
of the number of attributes and relationships.

A similar trend can be observed for Dε , i.e., recommend-
ing UML classes leads to better performance as shown in
Table 9. Even though the success rate is slightly lower, i.e.,
0.58 and 0.62 for classes and classmembers, respectively, the
othermetrics confirm thatMORGAN obtains better results in
recommending class entities compared to the former model
dataset, i.e., Dα . This is expected since we extracted those

123

MORGAN: a modeling recommender system based on graph kernel

Fig. 16 Evaluation scores for
recommending JSON root
properties on Dγ

Fig. 17 Evaluation scores for
recommending JSON nested
properties on Dγ

Table 9 Evaluation scores for Dε

Metric Classes Class members

Success rate 0.56 0.61

Precision 0.24 0.15

Recall 0.33 0.19

F-measure 0.20 0.13

Time (s) 0.21 0.13

models by using MoDisco from Java projects while Dε is
composed of a curated list of UML models. Despite this,
the scalability issue is confirmed by observing the required
time for obtaining a single recommendation, i.e., MOR-
GAN takes 0.20 s to suggest a list of relevant UML classes.
Though the time required for the class attributes is slightly
lower, i.e., 0.13 s, it is evident that augmenting the complex-
ity of the graphs can hamper the tool’s timing performance.
Altogether, the conducted analysis suggests that the dataset
curation process contributes to achieving better results even
though the scalability of the approach can be affected.

Answer toRQ4.The obtained results obtained by consideringMod-
elSetare comparable with the ones reported in the previous analysis,
though MORGAN suffers from the scalability issue if complex
graphs are considered.

6 Threats to validity

We discuss the threats that could impact on the validity of
the study’s outcomes. Moreover, we also identify possible
countermeasures to mitigate them.

Threats that arose in the formerwork internal validitywere
related to two aspects, i.e., the graph kernel similarity and
the employed encoding scheme, including the preprocess-
ing of the input models. Concerning the former, we enhance
the underpinning kernel similarity by adopting the Vertex
Histogram technique. In such a way, we increase the compu-

tational efficiency by reducing the whole recommendation
time even for large graphs. Concerning the latter, the pre-
processing phase might miss relevant data, i.e., stemming
does not consider the semantics of the examined terms, lead-
ing to possible loss of features during the encoding phase.
To minimize the threat, we employed lemmatization in the
pre-processing pipeline to augment the overall accuracy of
the tool. Moreover, the conducted evaluation on the Mod-
elSetdatasets reveals that the scalability of MORGAN can
be affected when increasing the size of the training data. To
mitigate this threat, further study on the underpinning algo-
rithm is needed, and we leave this as future work.

The selection of JSON schema as modeling activity may
hamper the external validity of our findings. Though they
conform to a well-defined metamodel, the internal structure
is completely different from that of the artifacts examined
in the original work. To tackle this issue, we adapted MOR-
GAN ’s encoder component by introducing a tailored parser
for JSON schema to obtain the same format used for the
other artifacts, i.e., models and metamodels. Furthermore,
the results in terms of accuracy might be undermined by the
quality of the considered schemas, i.e., the similarity among
the JSON belonging to the dataset. We mitigate this threat
by applying a set of quality filters on the JSON schemas
crawled from GitHub, i.e., duplicates removal, parsing, and
conformance check.

7 Related work

This section reviews relevant studies that are related to (i)
supportingmodeling activities; and (ii) exploiting GNNs and
graph kernels in the recommender systems domain.

7.1 Modeling assistant tools

The Extremo Eclipse plugin [27] supports modeling activi-
ties by analyzing information sources obtained fromdifferent
resources, i.e., Ecore, XMI, RDF, OWL files. Extremo uses

123

C. Di Sipio et al.

such excerpted data to build a common data model by map-
ping relevant entities. The underpinning query mechanism
allows users to customize and refine the retrieved entities by
following two styles, i.e., predicate-based or custom.

Dupont et al. [28] propose a domain-specific modeling
(DSM) environment to assist the specification of models in
Papyrus.Given aUMLprofile, the tool exploits theEMFgen-
erator to map each profile metaclass to a concrete Java class.
Afterward, the generated Papyrus plugin is used to define
custom DSL using a tooling palette to specify graphic com-
ponents. The proposed environment can be further extended
by including different features, e.g., proactive triggering,
fine-grain palette customizations, or suggestions to complete
the input UML profile, to list a few.

AVIDA-MDE [29] supports the generation of behav-
ioral models starting from the requirements specification by
using a digital evolution strategy. Given a well-defined set
of parameters and an initial model, the tool elicits instinc-
tual knowledge elements and constructs new transitions to
support scenarios and meet the specified constraints. The
resultant model is eventually evaluated using a robot nav-
igation system as the testing scenario.

With the aim of supporting the definition of Atom3

models, Sen et al. [30] devised a model assistant based
on a constraint logic program (CLP) strategy. The pro-
posed approach induces the complete model using a set of
constraints expressed in Prolog. Afterward, the user can cus-
tomize such generatedmodel by relying on a domain-specific
editor. The system eventually solves the specified constraints
to produce the finalmodel, which can be decoratedwith addi-
tional elements manually specified by the designer.

The ASketch tool [31] is capable of completing Alloy
partial models using automated analysis. Given the input
model, the interpreter extracts relevant information using a
tailored parser. In such a way, a list of possible abstract can-
didates is generated and ASketch can find possible solutions
by employing an SAT solver. The system eventually fills the
model under construction with concrete candidate fragments
such that predefined tests, i.e., unit testing, test execution.

Batot and Sahraoui [32] formulate the design of a mod-
eling assistant as a multi-objective optimization problem
(MOOP). The system employs the well-known NSGA-II
algorithm to search for partialmetamodels given a predefined
initial set by using the Pareto concept. It helps modelers to
complete the delivered models using coverage degrees and
pre-definedminimality criteria. Besides textual format speci-
fications,models can be outlined bymeans of graphical tools,
e.g., DIA or Visio. An interactive approach to metamodel
construction has been proposed in Ref. [33]. Given a model
fragment expressed using graphical tools, the systemcan sug-
gest relevant elements that can be employed to complete the
model-under-construction by using well-known refactoring
strategies, quality issues for the conceptual scheme, model

design patterns, and antipatterns. The system assesses the
quality of this initial version against model examples. The
validated model is eventually compiled into a given tech-
nology, ie EMF or METADEPTH. Similarly, Kuschke et al.
[34] present a pattern-based approach to recommend relevant
completions for structural UML models. Each user opera-
tion triggers an event in which the detailed information is
detected. The tool retrieves a set of ranked activity candi-
dates (AC) which supports modelers during model editing.

Given an incomplete Simulink model, the SimVMA pro-
totype [35] integrates ML, MDE, and software cloning to
provide (i) a complete model; or (ii) single edit operation on
the incomplete model. To this end, the tool employs code
cloning techniques and an ML model to identify potential
similar candidates by examining past usage statistics of exist-
ing models.

Recently, an NLP-based architecture for the autocomple-
tion of partial models has been presented [4]. Given a set
of textual documents related to the initial model, relevant
terms are extracted to train a contextualmodel using the basic
NLP pipeline, i.e., tokenization, splitting, and stop-word
removal. Afterward, the system is fed with the model under
construction to automatically slice it following a set of prede-
fined patterns used to search for recommendations.Modelers
can give feedback which can be used to update the model
and improve the recommendations. A pre-trained neural net-
work was used to recommend relevant metamodel elements,
i.e., classes, attributes, and associations [5]. Such data is
encoded in tree-based structures that are masked using the
well-founded RoBERTa model language architecture plus
an NLP pipeline. This preprocessing is needed to obtain
an obfuscated training set that are used by the network to
produce the outcomes. DoMoBOT [36] combines NLP and
a supervised ML model to automatically retrieves domain
models from the textual content using the spaCy tool. After
the preprocessing phase, the predictive component uses the
encoded sentences to retrieve similar model entities and gen-
erate the final domain model.

In the context of metamodeling assistant, we already pro-
posed MemoRec [22], a recommender system that exploits
a context-aware collaborative filtering technique to retrieve
relevant artifacts. By relying on four different encodings,
the system assists the completion of a given metamodel by
suggesting metaclasses at the level of the package and the
corresponding structural features. After the encoding phase,
MemoRec retrieves a list of items according to the type of
the selected recommendation ranked by making use of the
Jaccard distance similarity.

Compared with the reviewed studies, MORGAN is dif-
ferent as it supports various types of models expressed in the
eligible formats, i.e., Ecore, xmi, and JSON schema. More-
over, using even partial models in the training phase allows
MORGAN to obtain acceptable results.

123

MORGAN: a modeling recommender system based on graph kernel

7.2 Using graph kernels to develop recommender
systems

The usage of random walk kernels has been investigated to
support social network-based recommendations [37]. Once
the social influence has been encoded in the graph, the
employed kernel predicts the ratings of the corresponding
products by using a distance measure defined on stationary
transition probabilities.

Ostuni et al. [38] exploits a neighborhood-based graph
kernel to improve content-based recommender systems. By
considering well-founded Linked Open Data datasets, the
proposed approach extracts semantics from stored items and
encodes their description into graphs. Afterward, the pro-
posed h-hop item neighborhood algorithm is employed to
retrieve the most similar items by relying on graph kernel
similarity that exploits the occurrence and the locality of the
entities.

An empirical evaluation of several graph kernel strate-
gies including random-walk with-restart similarity matrix
and regularized commute-time kernels was conducted [39]
to study their performance. The authors applied these tech-
niques to perform (i) semisupervised classification and (ii)
collaborative recommendations. To assess the effectiveness
of the considered approaches, a nested cross-fold validation
has been carried on by measuring the AUC curve for each
algorithm.

A generic kernel-basedmachine learning approach of link
prediction in bipartite graphs has been proposed [40] to sup-
port collaborative filtering recommender systems. First, the
system inspects nodes and links that are close to a focal user-
item pair to predict the possible interactions. Then, the graph
kernel is used to capture the structure of the considered con-
text to feed the SVM algorithm that is employed to deliver
the retrieved items.

Xu et al. [41] made use of graph kernels to compute item
similarity by exploiting user-item ratings. First, the approach
builds an undirected graph from the user-item matrix. After-
ward, such graphs are transformed into neighborhood graphs
that have been used to compute the graph kernel similarly.
The results show that the proposed outperforms traditional
recommender systems based on linked open data strategy.

In relation to existing work, MORGAN is the first multi-
purpose recommender system to support the specification of
different modeling artifacts, including JSON schema. Being
built on top of graph kernels allows the tool to exploit the
well-founded background related to such techniques to deal
with data presented as nodes and edges. In this respect, there
is the potential to further improveMORGAN ’s performance
by incorporating advanced algorithms in this domain. We
consider this as our future research agenda.

8 Conclusion and future work

To support modelers in their daily activities, MORGAN has
been proposed as a practical solution to the recommendation
of models and metamodels, allowing one to easily choose
and adopt suitable components. In this paper, we extended
our previous work by introducing the lemmatization step in
the preprocessing phase. Furthermore, we equipped the rec-
ommendation engine with a more efficient kernel similarity
function, helping the system to obtainmore relevant results in
less time. An empirical evaluation of five real-world datasets
demonstrated thatMORGAN is applicable in different appli-
cation domains.

For future work, we plan to further improve MORGAN
by adopting different graph structures, e.g., heterogeneous or
weighted graphs, to improve the scalability of the approach.
Furthermore, we suppose that link prediction or generative
graphs techniques can be applied as an alternative strategy to
complete models represented in a graph-based format. Con-
cerning the recommendation of JSON schema elements, it is
our strong belief that a curated dataset with similar elements
brings better results in terms of accuracy. Last but not least,
we will investigate the applicability of ontologies to increase
the number of relevant artifacts, moving forward a domain-
aware intelligent modeling assistant capable of embedding
the semantics in the retrieved recommendations.

Acknowledgements The research described in this paper has been par-
tially supported by the AIDOaRT Project, which has received funding
from the European Union’s H2020-ECSEL-2020, Federal Ministry of
Education, Science and Research, Grant Agreement n◦ 101007350. We
thank the anonymous reviewers for their valuable comments and sug-
gestions that helped us improve the paper.

Funding Open access funding provided by Università degli Studi
dell’Aquila within the CRUI-CARE Agreement.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indi-
cate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence,
unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the
permitted use, youwill need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.

References

1. Nguyen, P. T., Di Rocco, J., Di Ruscio, D., Pierantonio, A., Iovino,
L.: Automated classification of metamodel repositories: a machine
learning approach. In: 2019 ACM/IEEE 22nd International Con-

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

C. Di Sipio et al.

ference on Model Driven Engineering Languages and Systems
(MODELS), pp. 272–282, Sep 2019

2. Nguyen, P.T., Ruscio, D.D., Pierantonio, A., Rocco, J.D., Iovino,
L.: Convolutional neural networks for enhanced classification
mechanisms of metamodels. J. Syst. Softw. 172, 110860 (2021)

3. Mussbacher, G., Combemale, B., Kienzle, J., Abrahão, S., Ali,
H., Bencomo, N., Búr, M., Burgueño, L., Engels, G., Jeanjean,
P., Jézéquel, J.-M., Kühn, T., Mosser, S., Sahraoui, H., Syriani,
E., Varró, D., Weyssow, M.: Opportunities in intelligent modeling
assistance. Softw. Syst. Model. 19(5), 1045–1053 (2020)

4. Burgueño, L., Clarisó, R., Gérard, S., Li, S., Cabot, J.: An nlp-
based architecture for the autocompletion of partial domainmodels.
In: M. L. Rosa, S. W. Sadiq, and E. Teniente (eds.), Advanced
Information Systems Engineering - 33rd International Conference,
CAiSE 2021, Melbourne, VIC, Australia, June 28 - July 2, 2021,
Proceedings, vol. 12751, pp. 91–106. Springer, Heidelberg (2021)

5. Weyssow, M., Sahraoui, H.A., Syriani, E.: Recommending meta-
model concepts during modeling activities with pre-trained lan-
guage models. Softw. Syst. Model. 21(3), 1071–1089 (2022)

6. Di Rocco, J., Di Sipio, C., Di Ruscio, D., Nguyen, P. T.: A
gnn-based recommender system to assist the specification of
metamodels and models. In: 2021 ACM/IEEE 24th International
Conference onModel Driven Engineering Languages and Systems
(MODELS), pp. 70–81, (2021)

7. JSON schema. http://json-schema.org/. Accessed 29 Feb 2022
8. Colantoni, A., Garmendia, A., Berardinelli, L., Wimmer, M.,

Bräuer, J.: Leveragingmodel-driven technologies for json artefacts:
The shipyard case study. In: 2021 ACM/IEEE 24th International
Conference onModel Driven Engineering Languages and Systems
(MODELS), pp. 250–260, (2021)

9. Sugiyama, M., Borgwardt, K. M.: Halting in random walk kernels.
In: Proceedings of the 28th International Conference on Neural
Information Processing Systems—Volume 1, NIPS’15, pp. 1639-
1647, MIT Press, Cambridge, MA, USA, (2015)

10. López, J.A.H., Cánovas Izquierdo, J.L., Cuadrado, J.S.: Modelset:
a dataset for machine learning in model-driven engineering. Softw.
Syst. Model. 21(3), 967–986 (2022)

11. Riesen, K., Bunke, H.: Graph classification and clustering based
on vector space embedding. World Scientific Publishing Co. Inc.,
USA (2010)

12. Vishwanathan, S., Schraudolph, N.N., Kondor, R., Borgwardt,
K.M.: Graph kernels. J. Mach. Learn. Res. 11(40), 1201–1242
(2010)

13. Clarisó, R., Cabot, J.: Applying graph kernels to model-driven
engineering problems. In: Proceedings of the 1st International
Workshop on Machine Learning and Software Engineering in
Symbiosis, MASES 2018, pp. 1–5, Association for Computing
Machinery, New York, NY, USA (2018)

14. Kriege, N. M., Giscard, P.-L., Wilson, R.: On Valid Optimal
Assignment Kernels and Applications to Graph Classification. In
Advances in Neural Information Processing Systems, volume 29.
Curran Associates, Inc., 2016

15. Weisfeiler, B., Leman, A.: The reduction of a graph to canonical
form and the algebra which appears therein. NTI Ser. 2(9), 12–16
(1968)

16. Porter, M.: An algorithm for suffix stripping. Program 14(3), 130–
137 (1980)

17. Siglidis, G., Nikolentzos, G., Limnios, S., Giatsidis, C., Skianis,
K., Vazirgiannis, M.: GraKeL: A graph kernel library in Python.
arXiv:1806.02193 [cs, stat], Mar 2020

18. Babur, Ö.: A labeled Ecore metamodel dataset for domain cluster-
ing, (2019)

19. GitHub. https://docs.github.com/en/rest/overview/resources-in-
the-rest-api#rate-limiting. Accessed 29 Jan 2021

20. GitHub Archive Dataset. https://console.cloud.google.com/
marketplace/product/github/github-repos. Accessed 29 Jan 2021

21. López, J. A. H., Cuadrado, J. S.: Mar: a structure-based search
engine for models. In: Proceedings of the 23rd ACM/IEEE Inter-
national Conference on Model Driven Engineering Languages and
Systems, MODELS ’20, pp. 57–67, Association for Computing
Machinery, New York, NY, USA (2020)

22. Di Rocco, J., Di Ruscio, D., Di Sipio, C., Nguyen, P.T., Pierantonio,
A.: Memorec: a recommender system for assisting modelers in
specifying metamodels. Softw. Syst. Model. 2022, 1–21 (2022)

23. Nguyen, P. T., Di Rocco, J., Di Ruscio, D., Ochoa, L., Degueule,
T., Di Penta, M.: FOCUS: a recommender system for mining API
function calls and usage patterns. In: Atlee, J. M., Bultan, T., and
Whittle, J. (eds.) Proceedings of the 41st International Conference
on Software Engineering, ICSE 2019, Montreal, QC, Canada, May
25-31, 2019, pp. 1050–1060. IEEE / ACM, (2019)

24. Raschka, S.: Model evaluation, model selection, and algorithm
selection in machine learning. CoRR, abs/1811.12808, 2018

25. Robillard, M.P., Maalej, W., Walker, R.J., Zimmermann, T. (eds.):
Springer, Berlin, Heidelberg (2014)

26. Hintze, J.L., Nelson, R.D.: Violin plots: a box plot-density trace
synergism. Am. Stat. 52(2), 181–184 (1998)

27. Mora Segura, A., de Lara, J.: Extremo: an Eclipse plugin for mod-
elling and meta-modelling assistance. Sci. Comput. Program. 180,
71–80 (2019)

28. Dupont, G., Mustafiz, S., Khendek, F., Toeroe, M.: Building
Domain-SpecificModellingEnvironmentswith Papyrus:AnExpe-
rience Report. In 2018 IEEE/ACM10th InternationalWorkshop on
Modelling in Software Engineering (MiSE), pp. 49–56, May 2018.
ISSN: 2575-4475

29. Goldsby, H. J., Cheng, B. H.: Avida-MDE: a digital evolution
approach to generating models of adaptive software behavior. In:
Proceedings of the 10th annual conference on Genetic and evolu-
tionary computation—GECCO ’08, p. 1751, ACM Press, Atlanta,
GA, USA, (2008)

30. Sen, S., Baudry, B., Vangheluwe, H.: Towards domain-specific
model editors with automatic model completion. Simulation 86(2),
109–126 (2010)

31. Wang, K., Sullivan, A., Marinov, D., Khurshid, S.: Asketch: a
sketching framework for alloy. In: Proceedings of the 2018 26th
ACM Joint Meeting on European Software Engineering Confer-
ence and Symposium on the Foundations of Software Engineering
(2018)

32. Batot, E., Sahraoui, H.: A generic framework for model-set selec-
tion for the unification of testing and learning MDE tasks. In:
Proceedings of the ACM/IEEE 19th International Conference on
Model Driven Engineering Languages and Systems, pp. 374–384,
ACM, Saint-malo France, Oct 2016

33. López-Fernández, J.J., Cuadrado, J.S., Guerra, E., de Lara, J.:
Example-driven meta-model development. Softw. Syst. Model.
14(4), 1323–1347 (2015)

34. Kuschke, T., Mäder, P., Rempel, P.: Recommending Auto-
completions for Software Modeling Activities. In: Moreira, A.,
Schätz, B., Gray, J., Vallecillo, A., and Clarke, P. (eds.) Model-
Driven Engineering Languages and Systems, Lecture Notes in
Computer Science, pp. 170–186, Springer, Berlin, Heidelberg
(2013)

35. Stephan, M.: Towards a cognizant virtual software modeling assis-
tant using model clones. In: 2019 IEEE/ACM 41st International
Conference on Software Engineering: New Ideas and Emerging
Results (ICSE-NIER), pp. 21–24, May 2019

36. Saini, R., Mussbacher, G., Guo, J. L. C., Kienzle, J.: Domobot: a
bot for automated and interactive domain modelling. In: Proceed-
ings of the 23rd ACM/IEEE International Conference on Model
Driven Engineering Languages and Systems: Companion Proceed-
ings, MODELS ’20, Association for Computing Machinery, New
York, NY, USA, (2020)

123

http://json-schema.org/
http://arxiv.org/abs/1806.02193
https://docs.github.com/en/rest/overview/resources-in-the-rest-api#rate-limiting
https://docs.github.com/en/rest/overview/resources-in-the-rest-api#rate-limiting
https://console.cloud.google.com/marketplace/product/github/github-repos
https://console.cloud.google.com/marketplace/product/github/github-repos

MORGAN: a modeling recommender system based on graph kernel

37. Li, X., Su, X., Wang, M.: Social network-based recommendation:
a graph random walk kernel approach. In: Proceedings of the 12th
ACM/IEEE-CS Joint Conference on Digital Libraries, JCDL ’12,
pp. 409–410, Association for Computing Machinery, New York,
NY, USA (2012)

38. Ostuni, V. C., Noia, T. D., Mirizzi, R., Sciascio, E. D.: A linked
data recommender system using a neighborhood-based graph ker-
nel. In International conference on electronic commerce and web
technologies, pp. 89–100. Springer, Heidelberg (2014)

39. Fouss, F., Francoisse, K., Yen, L., Pirotte, A., Saerens, M.: An
experimental investigation of kernels on graphs for collaborative
recommendation and semisupervised classification. Neural Netw.
31, 53–72 (2012)

40. Li, X., Chen, H.: Recommendation as link prediction in bipartite
graphs: a graph kernel-based machine learning approach. Decis.
Support Syst. 54(2), 880–890 (2013)

41. Xu,W., Xu, Z., Zhao, B.: A graph kernel based item similaritymea-
sure for top-n recommendation. In: Web Information Systems and
Applications: 16th International Conference, WISA 2019, Qing-
dao, China, September 20-22, 2019, Proceedings, pp. 684–689,
Springer, Berlin, Heidelberg (2019)

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

Claudio Di Sipio is a PhD stu-
dent at the University of L’Aquila,
Italy. He is working on mining
techniques to analyze open-source
software, and he is also investi-
gating the application of low-code
platforms to support the devel-
opment of recommendation sys-
tems. Contact him at claudio.disip
io@univaq.it

Juri Di Rocco is an assistant profes-
sor at the University of L’Aquila,
Italy. He obtained a PhD in Com-
puter Science from the University
of L’Aquila. He is interested in
several aspects of software lan-
guage engineering and Model-
Driven Engineering (MDE) includ-
ing domain specific modelling lan-
guages, model transformation,
model differencing, modelling
repositories and mining techniques.
More information is available at
http://www.di.univaq.it/juri.dirocco.
Contact him at juri.dirocco@univaq.it.

Davide Di Ruscio is an Asso-
ciate Professor at the DISIM—
University of L’Aquila. His main
research interests are related to
several aspects of Software Engi-
neering, Open-Source Software,
and Model-Driven Engineering
(MDE) including domain specific
modelling languages, model trans-
formation, model differencing, cou-
pled evolution, and recommenda-
tion systems. He has published
more than 170 papers in various
journals, conferences and work-
shops on such topics. He is a

member of the steering committee of the International Conference
on Model Transformation (ICMT), of the Software Language Engi-
neering (SLE) conference, of the Seminar Series on Advanced Tech-
niques & Tools for Software Evolution (SATTOSE), of the Workshop
on Modelling in Software Engineering at ICSE (MiSE) and of the
International Workshop on Robotics Software Engineering (RoSE).
He is in the editorial board of the International Journal on Software
and Systems Modeling (SoSyM), of IEEE Software, of the Journal of
Object Technology, and of the IET Software journal. More informa-
tion is available at http://people.disim.univaq.it/diruscio/. Contact him
at davide.diruscio@univaq.it.

Phuong T. Nguyen obtained a
PhD in Computer Science from
the University of Jena, Germany.
Since graduation, he has worked
as a university teaching and research
assistant in Vietnam and Italy. He
is now with the University of
L’Aquila, Italy, as a tenure track
assistant professor. His research
interests include Computer Net-
works, Semantic Web, Recommender
Systems, and Machine Learning.
Recently, he has been working to
develop recommender systems in
Software Engineering for mining

open-source code repositories. Email: phuong.nguyen@univaq.it.

123

http://www.di.univaq.it/juri.dirocco
http://people.disim.univaq.it/diruscio/

	MORGAN: a modeling recommender system based on graph kernel
	Abstract
	1 Introduction
	2 Motivations and background
	2.1 Motivating example
	2.2 Graph kernel similarity

	3 Proposed approach
	3.1 Parsers
	3.2 Graph encoder
	3.3 Matrix encoder
	3.4 Vertex histogram kernel
	3.5 Explanatory example

	4 Evaluation
	4.1 Research questions
	4.2 Datasets extraction
	4.3 Settings
	4.4 Metrics

	5 Experimental results
	5.1 RQ1: Does the preprocessing step contribute to a performance gain of MORGAN ?
	5.2 RQ2: How does the vertex histogram kernel function impact on the computational efficiency?
	5.3 RQ3: How effective is MORGAN at recommending JSON schema elements?
	5.4 RQ4: How is MORGAN 's performance changed when working on ModelSet, a benchmark dataset of metamodels and UML models?

	6 Threats to validity
	7 Related work
	7.1 Modeling assistant tools
	7.2 Using graph kernels to develop recommender systems

	8 Conclusion and future work
	Acknowledgements
	References

