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Executive summary 

The AIDOaRt project aims at improving the entire design and life cycle of software systems, through a 

suite of tools that leverage Artificial Intelligence techniques. The solutions provider partners that 

participate in the project develop the tools, which are experimented by the case studies providers 

partners that use them to develop several software systems, which are also referred to as 

demonstrators. All partners collaborated in the work package WP1 “Use Cases Analysis and AIDOaRt 

Solution Architecture” to define the requirements of the tools and continue to collaborate in the case 

studies.  

A case study consists of different types of activities: (1) to integrate the tools in the development 

processes of the case studies provider, (2) to develop the demonstrator, and (3) to evaluate the 

AIDOaRt outcomes by assessing the achievements of the tools as well as of the demonstrator.  

The task T5.2 “Use Cases development” consists of the activities of types (1) and (2), T5.3 “Use Cases 

execution and evaluation” consists of those of type (3). Both tasks belong to WP5 “Integration and Use 

Case Evaluation”. T5.2 and T5.3 are organised in two iterations whose results are the preliminary 

version and then the final version of the demonstrators and of the AIDOaRt evaluation.  

This deliverable D5.7 (one of the results of task T5.3) follows the preliminary results of T5.2 reported 

in D5.6 [10], including the specified KPIs that were defined in T5.3. In this document, the first iteration 

by reporting on the preliminary evaluation will be concluded. The achievements of the second and 

final iteration will be reported in D5.8 [10] (task T5.2) and D5.9 [11] (task T5.3).  

The case study providers proposed the systems to be developed on the basis of their specific industrial 

and technical interests. These systems span over different domains of application and require solutions 

for several challenges that are summarised below: 

• Requirements — this challenge is mostly about automatic verification of requirement consistency 

with respect to a reference guideline. Automatic classification of the requirements and estimation 

of the development effort.  

• Models — Automatic generation of models. One system, in the railway domain, uses the models 

to prove formally that the implementation complies with the specification. In the automotive 

domain, models of the driver behaviour are needed for the tests in real driving conditions (e.g. 

emissions or battery range and life-time). Moreover, in the same domain, the ambition is to arrive 

at Artificial Intelligence models that support the Project Manager by predicting the evolution of 

the development.  

• Verification — Most case study providers share the ambition to automate test activities: selections 

of the critical parameters and of the test cases, generation and executions of the latter. The 

verification of the models and co-simulation techniques are included.  

• Self-adaptivity — This challenge covers various topics such as sensor configuration, auto-

calibration, and processing improvement according to the working conditions.  
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• DevOps — Artificial Intelligence techniques to support DevOps: identifications of links between 

code changes and test results; deployment adaptability to new projects; run time monitoring, to 

assess the correctness of new deployments and, during the operating life, for anomaly detection; 

automatic system recovery.  

Finally, we would like to note that the above list is an attempt to summarise the key topics of the 

challenges tackled in the case studies of AIDOaRt, but it is not exhaustive.  
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1. Introduction 

1.1. Scope 

This document, deliverable D5.7 “Use cases evaluation report – 1”, describes the preliminary activities 

and results of task T5.3 “Use Cases Evaluation” of work package WP5 “Integration and Use Case 

Evaluation” of the AIDOaRt project. 

The document is about the evaluation of the development that individual partners have made by 

project month M30 (September 2023).  

1.2. Project overview 

The AIDOaRt project aims at providing a suite of tools that improves the entire design and life cycle of 

software systems, from the requirement analysis to the operating phase. The keywords, that are in the 

extended name of the project, are “Artificial Intelligence augmented automation”. More automation 

means less effort, fewer errors, definitively lower costs. For this purpose, AIDOaRt leverages Artificial 

Intelligence techniques. The tools are developed during the project, or improved starting from 

previous versions, by the AIDOaRt partners that are grouped under the name “solution providers”.  

Another group of partners participates in the project, the “case study providers”, that can be 

considered as end users of the tools (in some cases some partners play both roles). These partners 

proposed, on the basis of their specific industrial and technical interests, the systems that they want 

to develop using the tools. Of course, the interaction between the two groups has iterative and 

incremental aspects, because during the project the tools are used as they are developed.  

The development of the systems constitutes the “case study”, a term borrowed from the social 

sciences that means semi-empirical verification and validation. In this project, we strive for a 

quantitative evaluation of verification and validation of the tools (as an AIDOaRt outcomes).  

It is worth noting that the improvements aimed by AIDOaRt are not limited to the development process 

and to the quality of systems, but in some cases extend to the functionalities: the boundary between 

tools and components blurs, because both enable advanced system features.  

In order to better understand the case studies and describe the potential tools and solutions, we 

iteratively proceeded in a model-based approach for requirements elicitation, tools functional 

description and a common framework architecture specification. This was accomplished in the various 

work packages as illustrated in Figure 1.1.  
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Figure 1.1 AIDOaRt workflow 

In WP1, the case study providers, as end users, cooperated with the solution providers to define the 

requirements of the AIDOaRt tools—deliverable D1.1 [1]. The former specified the case studies, each 

of which was divided in use case scenarios (referred also as development scenario)—deliverable D1.3 

[2]. The latter defined the architecture of the tools structured in a framework—deliverables D1.2 [3] 

and D1.4 [4].  

The solution providers have continued their work in the technical work packages WP2, WP3, and WP4 

where they develop the tools that integrate horizontally in the task T5.1 of WP5—deliverable D5.2 [7].  

In task T5.2 of WP5, whose first results were presented in D5.6 [10] deliverable, the case study 

providers collaborated with the solution providers, for the vertical integration of the tools in their 

development processes, and develop their systems.  

The collaboration extended to the T5.3 of WP5 where, on the basis of the use of the tools in the case 

studies, the AIDOaRt outcomes are evaluated.  

This D5.7 deliverable reports about the first phase of evaluation of the case study development, 

specifically evaluating results considering requirement coverage and KPIs for individual UC scenarios. 

This report also contains planned improvements for the next development phase and plans for 

demonstration at the end of the project. 

This document will be followed by D5.8 [10] for the final report of the case study development in M34, 

and D5.9 [11][11] for the final evaluation in M36. 

1.3. Case Studies 

Table 1.1 outlines the AIDOaRt Case Studies. 
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Table 1.1 Case studies of AIDOaRt 

ID Partner Case Study Name Domain 

CS01 ABI (Abinsula SRL) Safety critical systems in the automotive 
domain using disruption technology 

Automotive 

CS02 AVL (AVL List GmbH) AI supported Digital Twin Synthesis supporting 
secure vehicle development and testing for 
novel propulsion systems 

Automotive 

CS03 BT (Bombardier 
Transportation)1 

DevOps for Railway Propulsion System Design Railway 

CS04 CAMEA (CAMEA, spol. s 
r.o.) 

AI for Traffic Monitoring Systems Traffic 
management 

CS05 CSY (CLEARSY SAS) Machine learning in interactive proving Development 
tools 

CS06 HIB (HI Iberia Ingeniería 
y Proyectos S.L.) 

AI DevOps in the restaurants business Catering 

CS07 PRO (Prodevelop SL) Prodevelop - Smart Port Platform monitoring Maritime 

CS08 TEK (TEKNE SRL) Agile process and Electric/Electronic 
Architecture of a vehicle for professional 
applications 

Automotive 

CS09 VCE (Volvo Construction 
Equipment AB) 

Data modelling to support product development 
cost and efficiency 

Construction 
Equipment 

CS10 WMO (Westermo 
Network Technologies 
AB) 

Automated continuous decision making in 
testing of robust and industrial-grade network 
equipment 

Development 
tools 

1.4. Project level and Case Studies KPIs 

This section explains the common structure and usage of the AIDOaRt KPIs (Key Performance 

Indicators), whose measurements give a quantitative dimension to the evaluation of the project 

results.  

The project level KPIs are reported in Table 1.2.  

Table 1.2 Project level KPIs of AIDOaRt 

Identifier Project KPI definition Target 

KPI_1.1 Improvement of the time required for identification of design problems thanks 
to the analysis of the collected data.  

25% 

KPI_1.2 Improvement of the early detection of system deviations.  30% 

KPI_2.1 Reduction of the time/effort required for managing and handling all the 
involved DevOps models.  

30% 

 

1 Bombardier Transportation (BT) was acquired by Alstom. The identifier of the case study is “ALSTOM_CS03”. 

The identifiers of the other elements (e.g. use case scenarios) of the case study have “BT” as initial letters.   
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Identifier Project KPI definition Target 

KPI_2.2 Increase in the number of available data sources to be actually managed and 
handled in existing engineering practices.  

25% 

KPI_2.3 Reduction of time/effort required for integrating new practices and services 
into a DevOps pipeline.  

20% 

KPI_3.1 Increase in the percentage of the automated parts of the processes which are 
currently manual (e.g. predictive maintenance, generation of test cases).  

30% 

KPI_3.2 Increase the coverage and quality of actionable feedback for the next DevOps 
iteration.  

25% 

KPI_4.1 Increase in the percentage of parts of the DevOps process covered in the Use 
Cases with productivity improvement.  

30% 

KPI_4.2 Reduction of deviations from the specifications to improve predictability, 
conformance to specifications and proposal of system design refinements.  

30% 

KPI_5.1_1 Number of external manufacturers to which AIDOaRt will be presented.  20 

KPI_5.1_2 Number of external manufacturers to which AIDOaRt will be presented and 
will interact and try our solution.  

5 

KPI_5.2 Number of presentations of the AIDOaRt technologies in the most important 
international open source forums.  

5 

KPI_6.1 Growth in systems sales for commercial partners in 3 years.  15% 

KPI_6.2 Number of organised public workshops, hackathons and dissemination events 
to raise awareness on the opportunities of AIOps for European companies.  

3 

Note (1): The project level KPIs are considered abstract classes from which to derive the case study 

KPIs which are the ones actually measured. The reason for this specialisation is the wide difference 

among the case studies: the features of the system that is developed, the subset of the AIDOaRt tools 

suite that is involved in this development, and the industrial interests and processes of the partner 

that carries out the case study. 

Note (2): Only the KPIs from KPI_1.1 to KPI_4.2 are directly related to the case study and consequently 

treated in this document.  

Table 1.3 is an example of the specification of a case study KPI.  

Table 1.3 Example of case study KPI specification 

KPI Identifier: <identifier> Scenario Identifier: <identifier > 

KPI 
Description: 

Improve the detection of problems in the design phase.  

Refined 

AIDOaRt KPI: 

Description: Improvement of the early detection of system deviations.  

Identifier: KPI_1.2 Target  ≥ 30 % 

KPI Measure: Number of defects that derive from design problems as percentage of the total 
number of defects. 

KPI Baseline: Source: Project management documents.  

Value: k0 = 10 % 
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KPI Identifier: <identifier> Scenario Identifier: <identifier > 

Target: Decrease: 100·Δ/k0 = 100·(k0 – k)/k0 ≥ 30 %  

D5.6 Measure: Value: k6 = 8 % 100·Δ6/k0 = 100·(k0 – k6)/k0 = 20 % 

D5.7 Measure: Value: k7 = 6 % 100·Δ7/k0 = 100·(k0 – k7)/k0 = 40 % 

In what follows, we provide the description of the fields of Table 1.3:  

• KPI Description — Generic description of the case study KPI. The name of this field is “KPI 

Instantiation and Definition” in D5.5 [8].  

• Refined AIDOaRt KPI — Project level KPI (see Table 1.2) from which the case study KPI is derived. 

The sub-fields “Description”, “Identifier” and “Target” are reported from Table 1.2 so that the case 

study KPI specification becomes self-contained 

• KPI Measure — How the case study KPI is measured.  

• KPI Baseline — k0 is the value of the case study KPI before AIDOaRt. The sub-field “Source” 

describes how k0 is evaluated (e.g. form documents, dashboards, interviews with experts).  

• Target — k is the value of the KPI measured in the case study. If the improvement is a “Decrease” 

(e.g. of effort, of number of errors, etc.) as in Table 1.2, then the difference is Δ = (k0 – k). If the 

improvement is an “Increase” (e.g. capacity), then the difference is Δ = (k – k0). At the right end of 

the row Target there is the case study KPI improvement, expressed as percentage, that is planned 

to be achieved at the end of AIDOaRt.  

• D5.6 Measure — Where possible the row “D5.6 Measure” gives some insights about the 

intermediate evaluation that was carried out in D5.6, otherwise it is omitted. At the right end of 

the row there is the improvement computed from k6 that is the measured value. 

• D5.7 Measure — Where possible the row “D5.7 Measure” gives some insights about the 

intermediate evaluation that is reported here in D5.7, otherwise it is omitted. At the right end of 

the row there is the improvement computed from k7 that is the measured value.  

Note (3): The differences among the KPI specifications in this document and those in the past 

deliverable D5.5 [8] are properly flagged and explained.  

1.5. Document overview 

After this Introduction Section, there is one Chapter for each Case Study. It reports the status, at the 

project month M30, of the system whose development constitutes the Case Study. Each Chapter has 

the following sections:  

1.  The Section “Case Study Description” summarises the case study and the motivations the 

partner had—and still has—for proposing it in the AIDOaRt project. It gives the synopsis of 

the case study: (1) organisation in Use Case scenarios, (2) collaboration with the Solution 

Providers in terms of Case Study requirements and used tools, and (3) the KPIs considered in 

the Case Study. 

2.  There is one Section for each development scenario of the Case Study. It describes: (1) 

summary of the preliminary results reached so far, (2) evaluation of results considering 
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requirements coverage, and (3) evaluation of results considering KPIs. Mainly Solution 

Providers contributed to this description and, when appropriate, they illustrated the progress 

of their work. 

3.  The section “KPIs” specifies the metrics, baselines, and target values of the key performance 

indicators that will be used in the evaluation of the Case Studies.  

4.  The Section “Planned improvements” summarises suggested ideas (of UC and also Solution 

Providers) that will be used in the next development phase to fulfil the defined KPIs. 

5.  The section “Planned demonstration” (also collaboration of UC and Solution Providers) 

suggests ideas for final demonstration of the project results. 

Chapter “Conclusions” closes the document. 
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2. ABI_CS01 case study “Safety critical systems in 
the automotive domain using disruption 
technology” 

2.1. Case Study description 

The Abinsula (ABI) case study presents a virtual rear-view mirror scenario in which multiple 

cooperative cameras are used to capture the context outside the vehicle, by means of AI-based 

technology (see deliverable D5.6 for a detailed description). In this case study, we consider two main 

macro challenges:  

1) ABI-CH1 — To guarantee the predictability of AI-based systems, using formal verification with 

respect to given specifications and guidelines is necessary. This also includes the need for formally 

verifying any Neural Network (NN) adopted in the system. To complete these features, a suite of 

tests should be defined to check whether a reactive system complies with a set of requirements. 

From ABI-CH1, the following sub-challenges can be derived: 

a) ABI-CH1.a — To guarantee formal verification with respect to given specifications. 

b) ABI-CH1.b — To guarantee formal verification with respect to given guidelines. 

c) ABI-CH1.c — To guarantee formal verification of the NNs adopted in the system. 

d) ABI-CH1.d — To test the compliance of the system with respect to requirements. 

2) ABI-CH2. The system is expected to autonomously react according to the external stimuli and 

internal needs. Therefore, it should be able to adapt itself and continue operation with a reduced 

number of cameras, as well as it should be able to use AI and ML techniques for image processing 

to detect and to signal possible hazards. In this regard, there is also a need for measuring the 

reliability of the AI and ML algorithms in a humanly interpretable way, in a safety-critical context. 

From ABI-CH2, the following sub-challenges can be derived: 

a) ABI-CH2.a — Realise an adaptive multi-camera system.  

b) ABI-CH2.b — Implement video elaboration based on AI/ML techniques. 

c) ABI-CH2.c — Measuring the reliability of the AI and ML algorithms in a humanly interpretable 

way. 

In AIDOaRt, Abinsula is collaborating with the University of Sassari (UNISS) and Intecs Solutions (INT) 

to study the adoption of formal methods in the automotive domain, to support the predictability of AI 

based systems and loosen the current technological limitations and enable the possibility of freely 

playing with all the available technology in the development of future cars. The synopsis of the case 

study is in Table 2.1.  
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Table 2.1 Synopsis of the case study ABI_CS01 

Use case scenario ABI_UCS1 — Functionality Verification 

 Description: The Functionality Verification refers to the automatic verification of 
requirement and model consistency against properties. 

Requirements: ● Directly addresses: ABI_R01, ABI_R02.  

Tools: UNISS_SOL_01, UNISS_SOL_02, UNISS_SOL_04 (UNISS) 

Use case scenario ABI_UCS2 — Test Definition 

 Description: The Test Definition refers to the automatic generation of a suite of tests for the 
system. 

Requirements: ● Directly addresses: ABI_R03. 

Tools: UNISS_SOL_03 (UNISS). 

Use case scenario ABI_UCS3 — Compliance Verification 

 Description: The Compliance Verification refers to the automatic verification of requirement 
consistency with respect to a reference guideline. 

 Requirements: ● Directly addresses: ABI_R05. 

 Tools: UNISS_SOL_01, UNISS_SOL_04 (UNISS). 

Implementation activities transversal to ABI use case scenario 

 Description: Implementation activities, transversal to the use case scenarios, that mainly 
involve the development and integration of AI-based applications for image 
processing.  

 Requirements: ABI_R04, ABI_R06, ABI_R07, ABI_R08, ABI_R09, ABI_R010, ABI_R11, ABI_R12 

 Tools: INT-DET, INT-DEPTH, INT-XAI (INT) 

Evaluation 

 KPI: The KPI defined for ABI_CS01 is related to the case study in general and not 
only to a specific use case scenario. Details are reported in Section 2.7.  

Please, notice that, with respect to deliverable D5.6, the solution UNISS_SOL_05 (UNISS) has been 

discarded. This does not affect the case study as its functionalities are absorbed by UNISS_SOL_01 and 

UNISS_SOL_04. In particular, the functionality related to the consistency verification of technical 

specifications with respect to a guideline will be covered by UNISS_SOL_01 through the use of formal 

methods combined with NLP techniques.  

2.2. Use case scenario ABI_UCS1 — Functionality Verification 

This section provides a brief description of the ABI_UCS1, and a summary of preliminary results. For 

details refer to deliverable D5.6 [9]. 

The UCS1 corresponds to the Functionality Verification step of this case study and involve mainly: 

● Automated verification of the system with respect to given requirements and properties 

(addresses ABI-CH1.a). 
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● The formal verification of Neural Networks, to guarantee that NNs satisfy stated input-output 

relations (addresses ABI-CH1.c). 

The solutions involved in ABI_UCS1 that mainly address ABI-CH1.a are UNISS_SOL_01 and 

UNISS_SOL_04, while UNISS_SOL_02 mainly addresses ABI-CH1.c. UNISS_SOL_01 provides automated 

consistency verification of technical specifications of safety-critical systems and UNISS_SOL_04 

provides automated formal consistency verification of a system design expressed language. 

UNISS_SOL_02 is aimed at providing automated verification of NNs with the goal of striking a balance 

between maintaining accuracy and robustness while making the resulting networks amenable to 

formal analysis (refer to deliverable D4.1 [6] for details).  

2.2.1. Summary of preliminary results 

So far, two main investigations have been carried out in ABI_UCS1, Modelling properties and 

requirements and Formal verification of NNs. 

Modelling properties and requirements 

UNISS is working on the development of two different tools aimed at verifying the consistency of 

requirements (UNISS_SOL_01) and system properties (UNISS_SOL_04) automatically.  

UNISS proposed the use of formal languages to model requirements and system properties since they 

provide a rigorous framework for specifying and analysing system behaviours, ensuring clarity, 

precision, consistency and correctness in the design process. In the context of UNISS_SOL_01, 

continuing the work presented in D5.6, we involved leveraging Property Specification Patterns (PSPs) 

to translate a set of Abinsula requirements expressed in natural language into formal specifications. 

PSPs are reusable templates/structures (see Figure 2.1) that capture common properties or constraints 

in system requirements. Information in the patterns is based on classifying the patterns in terms of 

system behaviours’ types they describe, considering the simple occurrence of a behaviour (Absence, 

Universality, Existence, Bounded Existence) or the relation of a behaviour with respect to another 

(Precedence, Response, Chain Response, Chain Precedence).  

 

Figure 2.1. PSP: Classification of the patterns, according to the kinds of system behaviours they describe. 

These patterns provide a systematic way to express and analyse properties in a formal specification 

language, and each pattern has a scope, which is the extent of the program execution over which the 

pattern must hold, e.g. global, before, after, between, after until.  

The considered set of Abinsula requirements is composed of 46 atomic requirements coming from 

specific guidelines (such as the ISO 16505:2019) and from customers' needs. The first step of this work 
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was to bridge the gap between controlled natural language requirements and the formal specifications 

necessary for rigorous system development. PSPs are able to capture common structures and 

properties that frequently occur in system requirements, providing a reusable and systematic 

approach to transform natural language expressions into formal representations.  

The process begins by analysing natural language requirements and identifying recurring patterns or 

structures within them. These patterns may involve properties like safety, synchronisation or timing 

constraints. By recognizing these patterns, we developed a catalogue of 42 property specification 

patterns that align with the specific domain. Next, we applied the identified patterns to the natural 

language requirements. They map the linguistic elements and structures in the requirements to the 

corresponding elements in the formal specification language. This step involved understanding the 

semantics of the patterns and their relationships to the desired system properties. Once the patterns 

are applied, a formal specification is obtained. This specification can be in the form of a mathematical 

logic formula, a temporal logic expression, or any other formal language suitable for system analysis 

and verification. The formal specification captured the essential properties and constraints originally 

expressed in natural language, but in a precise and unambiguous manner. This approach provided a 

systematic and consistent way to convert requirements into formal specifications, enabling rigorous 

analysis and verification of system behaviours. 

Example: From requirement to PSP 

Let’s consider one of the Abinsula requirements, coming from the ISO 16505:2019. 

Field of view: The field of view of the Camera Monitoring System shall cover the field of view at least 
that is required by the national body for conventional mirrors of the same class, both in horizontal 
and vertical direction. 

● Firstly, this requirement has been partitioned into three atomic requirements, expressed in 

controlled natural language. 

● Then, each one has been analysed using the PSP templates, to identify its scope and pattern. 

● Finally, each requirement has been conferred into a formal specification. 

Atomic requirement Scope Pattern Requirement in PSP 

IF Class EQUAL 1 AND IF default 
view THEN vertical vision distance 
MUST be EQUAL or GREATER 
THAN 60 m behind driver 

Global Occurrence 

 -  

Universality 

Globally, it is always the 

case that if class = 1 and 

default_view holds, then 

vertical_vision_distance >= 

60 holds as well 

IF Class EQUAL 1 AND IF default 
view AND vertical longitudinal 
median plane EQUAL or GREATER 
60 m THEN horizontal vision MUST 
be EQUAL or GREATER THAN 20 m  

Global Occurrence 

 -  

Universality 

Globally, it is always the 

case that if class = 1 and 

default_view and 

vertical_longitudinal_median

_plane >= 60 holds, then 

horizontal_vision >= 20 

eventually holds. 
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IF Class EQUAL 3 AND IF default 
view THEN vertical vision distance 
MUST be EQUAL or GREATER 
THAN 20 m behind 
driver/passenger 

Global Occurrence 

 -  

Universality 

Globally, it is always the 

case that if class = 3 and 

default_view holds, then 

vertical_vision_distance >= 

20 holds as well. 

IF Class EQUAL 3 AND IF default 
view AND vertical longitudinal 
median plane EQUAL or GREATER 
THAN 4 m THEN vertical vision 
MUST be EQUAL or GREATER 
THAN 1 m  

Global Occurrence 

 -  

Universality 

Globally, it is always the 

case that if class = 3 and 

default_view and 

vertical_longitudinal_median

_plane >= 4 holds, then 

vertical_vision >= 1 holds 

as well. 

IF Class EQUAL 3 AND IF default 
view AND vertical longitudinal 
median plane EQUAL 20 m THEN 
horizontal vision MUST be EQUAL 
or GREATER THAN 4 m  

Global Occurrence 

 -  

Universality 

Globally, it is always the 

case that if class = 3 and 

default_view and 

vertical_longitudinal_median

_plane >= 20 holds, then 

horizontal_vision >= 4 holds 

as well. 
 

While the use of PSP offers significant benefits in translating requirements from natural language to 

formal specifications, there can be challenges and difficulties associated with their use. In fact, 

choosing the appropriate PSP for the given set of requirements can be challenging, since it requires a 

deep understanding of the domain, the system being developed, and the available patterns. Selecting 

the wrong pattern or failing to identify the relevant patterns can lead to inaccurate or incomplete 

formal specifications. Moreover, sometimes PSP may not cover all possible types of requirements or 

properties, necessitating the creation of new patterns or modifications to existing ones. Finally, 

interpreting and applying PSPs can be difficult, especially when dealing with complex or ambiguous 

natural language requirements. The mapping process from natural language to formal language 

requires careful analysis and understanding of the patterns' semantics, which may be subject to 

interpretation. 

Experimental analysis. The main focus of the experimental analysis was to automatically formally 

verify the consistency of the 42 requirements expressed in PSP by means of ReqV2, for formal 

consistency checking of requirements. Automatising the requirements validation process is important 

to streamline the verification phase and reduce potential human errors. ReqV is an open source tool 

for the formal consistency checking of requirements. The main goal of the tool is to provide an easy-

to-use environment to enable users with no background knowledge of formal methods and logic 

languages to write and verify requirements, expressed as a list of properties specification patterns. It 

provides an intuitive interface (see Figure 2.2), accessible within a web browser, for writing 

requirements in PSP and automatically translate them in Linear Temporal Logic (LTL) in order to check 

 
2 ReqV is available for download at this link: https://qbflib.org/VMPROSSIMO/Prossimo_Sage.ova 
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their inner consistency by means of a model checker (i.e. NuSMV). In case of inconsistency, ReqV can 

also extract a minimal set of conflicting requirements to help designers in correcting the specification. 

 

Figure 2.2. List of requirements inserted by the user in a project. Requirements coloured in green are 

syntactically correct, the ones in red are not. A grey requirement indicates it has been disabled and therefore 

not considered during the analysis. 

The set of requirements involved in our analysis were initially 42 and it includes 25 boolean signals and 

26 numerical ones. Unfortunately, we had to exclude from the analysis 8 requirements containing ratio 

and percentage type signals, as they are not supported by the tool, by reducing the set of requirements 

for the analysis to 34. Initially, we attempted to process all 42 requirements, disabling the 8 

requirements with unsupported signals, however this resulted in excessively long processing times. 

Therefore, we partitioned the requirements into three groups to expedite the processing, which, in 

this case, proved to be extremely swift. The first group, consisting of 10 requirements, was processed 

in about 3 CPU seconds. The second group of 7 requirements was processed in 3 CPU seconds, while 

the third group consisting of 17 requirements was processed in 11 CPU seconds. All the tested 

requirements turned out to be formally consistent. When it terminated, ReqV returned the results, as 

shown in Figure 2.3. In Table 2.2 we present a synopsis of the requirements, to give an idea of the kind 

of patterns used in the specification experimental analysis.  
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Figure 2.3. Report of the consistency checking task in ReqV. 

 

Table 2.2. Case study requirements synopsis. The table is organised as follows: the first column reports the 

name of the patterns and it is followed by one group of two columns denoted with the scope type. Each cell 

in these two columns reports the number of requirements grouped by pattern and by scope type.  

 
Pattern  

Specification 

Globally After 

Universality 14  

Existence  5  

Response 1 13 

Absence 1  

Concerning the part of the automatic verification of system properties, which relates to the 

development of UNISS_SOL_04, we are currently experimenting with an ontology-based approach to 

support formal verification of system design. After the definition of the main components and 

properties of the Smart Camera Monitoring System (in Figure 2.4, we report a simplified graphical 

representation of the main ABI system model), we implemented it by means of ontology. Ontologies 

are well-suited for capturing domain knowledge data, deriving requirements, providing analysis, and 

developing applications. They provide representations of domain knowledge by defining concepts and 

their relationships and can be used both alone or with other ontologies since they offer interoperability 

solutions to data heterogeneity problems, providing a factorization benefit to knowledge so it can be 

reused in different projects. Specifically, using an ontology in software engineering offers two key 

benefits. Firstly, it establishes a shared vocabulary within specific domains, allowing software 

developers working on diverse applications to communicate effectively. Secondly, by representing the 

software model and user requirements as an ontology, one can employ an inference engine to 

automatically verify requirement satisfaction. There are several languages for representing ontologies, 

including the Web Ontology Language (OWL), which is the one used in this context. The tool used for 
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the creation of the ontology was Protégé and in Figure 2.5 we show the main structure of the ontology. 

Tools such as Protégé, with intuitive interfaces and the use of user-friendly constructs like Manchester 

syntax, provide easy access to a presumably complex and involved formalism. This allows designers, 

even without specialised knowledge in ontology development, to easily represent the system with its 

constraints and validate it through the use of integrated reasoners within the tool. 

 

Figure 2.4. Representation of a simplified version of the Smart Camera Monitoring System 

 

 

Figure 2.5. Main structure of the ontology in Protégé. 

 

We report the metrics of the ontology in the following Table 2.3.  

Table 2.3. Ontology metrics. 

Metric name Property 

DL expressivity  ALCHIQ(D) 
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Class count 11 

Object property count 18 

Data property count 4 

Axiom 134 

Formal verification of NNs 

UNISS investigated how the recent advancements in Satisfiability Modulo Theory (SMT) technologies 

may be leveraged to allow for the verification of NNs with non-linear activation functions. In particular, 

UNISS focused on a computer vision task that, while less complex than the one considered in the 

ABINSULA case study, is still able to give us insight into the feasibility of the considered approach while 

keeping the computational resources needed for the training of the networks to a bearable level. 

SMT is a field of automated reasoning that focuses on determining whether a logical formula is 

satisfiable using a combination of decision procedures for different theories. It has been used as a key 

component in the development of powerful tools such as theorem provers, model checkers, and 

symbolic execution engines. 

While leveraging SMT solvers for verifying neural networks is not a completely new idea (the first paper 

regarding this kind of application dates back to 2010), the innovations in the domain of SMT solvers 

occurred in the last ten years justify the need for a more recent experimental evaluation. 

In this context, UNISS developed a set of benchmarks based on different network architectures and 

properties of interest and we used them to test the performances of four different SMT solvers chosen 

between the winner and runner-ups of the quantifier-free non-linear arithmetic division in the single 

query track of the international SMT competition (SMTCOMP 2022). 

In particular, UNISS selected the CVC, MathSAT, Z3 and Yices solvers: the first two support both piece-

wise linear and transcendental functions, whereas the others support only piecewise linear ones. 

Therefore, it was possible to test on all four solvers only the benchmarks presenting ReLU activation 

functions: the remaining ones were tested only on CVC and MathSAT. 

We chose to focus on convolutional neural networks since they are best suited for computer vision 

tasks: in particular, we considered networks whose feature extractors present the same architecture, 

whereas their classifiers differ in the choice of activation functions, layers size, and layers number. The 

activation functions considered were the Rectified Linear Unit (ReLU), the hyperbolic tangent and the 

logistic function. We focused on the verification of the classifier instead of the whole network since 

the feature extractor component usually has high complexity and is often regarded as a black box: it 

could be, for example, easily replaced with a non-neural feature extraction algorithm like SIFT. 

The property we were interested in verifying is the robustness of the classifier to local perturbations 

of its input vector, known in the literature as adversarial perturbations, which may cause the 

misclassification of the same. In practice, we tried to prove that there exists at least an image whose 
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Chebyshev distance from the original one is less than a constant value (Epsilon) and which is incorrectly 

classified by the neural network of interest. If such property is proven to be unsatisfiable then it means 

that the network is robust to the local perturbation of interest. 

In Table 2.4 a schematic representation of our benchmarks with the related parameters of interest is 

shown. As can be seen in the column Accuracy and the related sub-columns, all the networks 

presented satisfactory performances on the task considered, that is, were able to correctly classify 

more than 96% of the images composing the test set. 

Table 2.4. Relevant data for the verification benchmarks. The column Architecture reports the number of 

neurons for each intermediate fully-connected layer of the classifier, the column Accuracy reports the 

percentage of test set images classified correctly by the networks, the column Epsilon reports the magnitude 

of the perturbation considered in the benchmark, and the column Benchmark ID represent the identifier 

assigned to the corresponding benchmark. The subcolumns ReLU, Logi and Tanh indicate that the reported 

values are related to the network architecture using the corresponding activation functions. 

 

In Table 2.5 we report the results of our experimental evaluation. Column Benchmark ID reports the 

identifier of the benchmark tested, while column Times reports the time needed, in seconds, to solve 

the benchmarks by the solvers of subcolumns MathSAT, CVC5, Z3, Yices2. Column Results report the 

response of the solvers regarding the query of interest. The symbol “-” means that the time limit of 

one hour was reached while trying to solve the query, whereas “N.S.” indicates that the solver did not 
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support the activation functions used in the query. We do not report in the table the results for the 

benchmarks from B_016 to B_044 because Z3 and Yices do not support transcendent activation 

function and both CVC and MathSATwere unable to solve any benchmark before the timeout. Finally, 

in Figure 2.6, we try to clarify the results presented in Table 2.3 using a graphical representation. 

Table 2.5.: Experimental results obtained by testing our benchmarks on the SMT solvers of interest. 
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Figure 2.6. Graphical representation, on a logarithmic scale, of the times needed by the solvers to complete 

the queries of interest. The x-axis represents the number of solved queries, whereas the y-axis represents 

the time needed by the solvers to answer each query. The times for the queries which were not solved 

before the timeout are not reported. 

From Tables 2.4 and 2.5 it appears clear that the “size” of the input variable space, controlled by 

Epsilon, is an important discriminating factor for the success of the verification process: indeed, all the 

queries presenting a higher value of Epsilon were, in general, much harder to verify for all the solvers 

and in many cases were impossible to verify before the timeout. It also appears clear that, as expected, 

the size of the network is another important factor. Furthermore, it appears that the number of layers 

in the network is much more important than the total number of neurons: B_006 to B_008 and B_009 

to B_011, corresponding to the networks with two layers of 16 and 8 and 32 and 16 neurons 

respectively, seems to be harder to solve than B_012 to B_014, corresponding to the network with a 

single layer of 64 neurons before its output layer. Finally, it is undeniable that, at least at this time, the 

complexity introduced by transcendent activation functions is too high for the capabilities of the 

existing solvers: indeed, only in the case of the smallest input variable space (Epsilon <= 0.01) and 

network architecture (a single layer of 16 neurons) MathSAT was able to solve a query before the 

timeout. 

Regarding the performances of the different solvers, CVC managed to successfully solve the greatest 

number of benchmarks, followed by MathSAT and Z3, with Yices managing to solve only 5 benchmarks 

out of the 15 whose activation functions it supported. However, it should be noted that Z3 did not 

manage to correctly determine the satisfiability of benchmarks B_007, B_009, and B_013 even if it 

appears to have finished their analysis before the timeout. All in all, from our results it seems that CVC 

and MathSAT are the best suited for the task of verification of neural networks. While this result is not 

particularly surprising for the case of CVC, as the winner of the QF_NRA division in the Single Query 
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Track of SMTCOMP 2022, MathSAT behaved quite better than expected, given its modest positioning 

in the same competition. 

2.3. Use case scenario ABI_UCS2 — Test Definition 

This section provides a brief description of the ABI_UCS2, and a summary of preliminary results. For 

details refer to deliverable D5.6. 

The UCS2 corresponds to the Test Definition of this case study and involves mainly the problem of 

automating the process of generating sets of test cases given a particular testing goal, such as 

structural, functional, non-functional and state-based properties (addresses ABI-CH1.d). 

The AIDOaRt solution more directly involved in this use case scenario is UNISS_SOL_03, which aims at 

providing automatic test suite generation in order to check whether a reactive system complies with 

a set of requirements. For details, please refer to deliverable D4.1. 

2.3.1. Summary of preliminary results 

The first step at the base of all use case scenarios involves the requirement definition and the system 

modelling. Therefore, we prioritised the work related to the rules to define the use case requirement, 

as well as the studies to identify the best modelling language and to verify the NNs. Therefore, no 

preliminary results are available yet in ABI_UCS2. 

2.4. Use case scenario ABI_UCS3 — Compliance Verification 

This section provides a brief description of the ABI_UCS3, and a summary of preliminary results. For 

details refer to deliverable D5.6. 

The UCS3 corresponds to the Compliance Verification of the methodological part of this case study and 

involves mainly the automated verification of technical requirements with respect to a reference 

guideline (addresses ABI-CH1.a and ABI-CH1.b). Originally, the AIDOaRt solution more directly 

involved in this use case scenario was UNISS_SOL_05, which was aimed at providing consistency 

verification of technical specifications with respect to a guideline (e.g. ISO standard guidelines). This 

solution has been discarded, and its functionalities have been absorbed by UNISS_SOL_01, through 

the use of formal methods combined with NLP techniques.  

Being ABI-CH1.a and ABI-CH1.b so strongly related, the work presented in ABI_UCS01 addresses both 

of them. In particular, the set of requirements we analysed include the Custom Requirements and the 

Specifications from ISO 16505:2019. 

2.4.1. Summary of preliminary results 

The first step at the base of all use case scenarios involves the requirement definition and the system 

modelling. Therefore, we prioritised the work, described in ABI_UCS1, related to the rules to define 
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the use case requirement, as well as the studies to identify the best modelling language and to verify 

the NNs. Please, refer to ABI_UCS1 for these results.  

2.5. Implementation activities transversal to ABI use case scenarios 

As in deliverable D5.6, this section is meant to report the activities that are transversal across the case 

study and cannot be described under a specific use case scenario. In particular, they involve mainly: 

● the adaptivity of the system that needs to work with a variable number of cameras (addressing 

ABI-CH2.a); 

● implementing video elaboration based on AI/ML techniques (addressing ABI-CH2.b); 

● measure reliability of AI/ML in a humanly interpretable way (addressing ABI-CH2.c). 

So far, the work carried out in this regard involved the tools INT-DEPTH, INT-DET and INT-XAI 

developed by Intecs. The INT-DEPTH and INT-DET solutions respond to the need of predicting new 

scenarios that might be considered as safety critical by identifying and giving a depth estimation of 

objects (vehicles, pedestrians, etc.) present in the surroundings of the vehicle. These solutions address 

ABI-CH2.b and are described in detail in deliverable D4.1. The INT-XAI solution brings the concept of 

explainability to the deep learning modelling world, giving an additional validation method. This 

solution addresses ABI-CH2.c and is described in detail in deliverable D3.4.  

2.5.1. Summary of preliminary results 

In order to develop a fast and high-performance object detector, INT-DET, a tailored version of YOLOv3 

[14] was selected. This architecture falls under the single-stage object detector category in which the 

entire image is processed in a single pass and the class probabilities and the bounding box coordinates 

are learned all at once. Another key feature is that YOLOv3 divides the input image into multiple grids 

and makes predictions at three different scales: this is crucial in helping to recognise objects of interest 

(vehicles, pedestrians, etc.) even when they are far away. YOLOv3 is also optimised for real-time object 

detection on various hardware platforms, making it suitable for safety-critical applications such as 

assisting the driver. 

This architecture was trained and tested on KITTI dataset [15], a widely used computer vision dataset 

for benchmarking and evaluating algorithms related to autonomous driving and robotics. It provides a 

diverse collection of sensor data collected from a moving vehicle in real-world urban traffic scenarios. 

In Figure 2.7 and Figure 2.8 an overview of the performance achieved is shown. In addition to achieving 

high precision and recall values, it is important to note the trend of the Mean Average Precision (mAP) 

metric: it represents a precision and recall trade-off and is obtained by averaging the Average Precision 

(AP) values across all categories, calculated in turn by taking the area under the precision-recall curve, 

to provide an overall assessment of the model’s performance. 
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Figure 2.7. Model performance on the test set in terms of AP and mAP values; mAP@0.5 is 74.83%. 

 

Figure 2.8. Model performance on the test set in terms of True Positive and False Positive; Precision is 

94.14%, Recall is 80.81% and F1-score is 86.97%. 

The INT-XAI tool is in an enhancement phase. The strand of providing the interpretation of an image 

containing only one object, thus solving the problem of explaining a classification model, is well-

developed in literature. The context of detection models, on the other hand, are much more complex 

as there are potentially many objects in the scene and also belonging to many classes simultaneously. 

Different strategies to solve this problem are being finally compared. 

The development of the INT-DEPTH tool is still ongoing. The training of the deep neural network 

underlying the algorithm that will provide an estimate of the depth of the objects in the scene will also 
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be based on the KITTI dataset [15], which provides a precise depth map as ground-truth obtained from 

LiDaR scans and is therefore an excellent benchmark for evaluating the final predictions. 

2.6. Evaluation of results considering requirements coverage 

In ABI case study, 12 requirements have been defined that are here summarised to make this chapter 

as comprehensive as possible: 

● ABI_R01: Use automated reasoning and ML techniques for verification of specifications and high-

level models. 

● ABI_R02: Use automated reasoning for verification of Deep Neural Network models. 

● ABI_R03: Use automated reasoning and ML techniques for generation of optimal test suites. 

● ABI_R04: Use ML for video elaboration. 

● ABI_R05: Use of automatic tools for compliance verification. 

● ABI_R06: The system shall work with 4 cameras. 

● ABI_R07: The videos shall be visualised on the car dashboard. 

● ABI_R08: The system should continue operation with a reduced number of cameras (2). 

● ABI_R09: The system shall provide soiling detection to recognize if the camera is dirty. 

● ABI_R10: The system shall adapt when driving into/out of a tunnel. 

● ABI_R11: The system shall detect relevant objects. 

● ABI_R12: The system shall estimate the vehicles approaching speed. 

The mapping of ABI requirements to solutions, and in turn to results, is not one-to-one. Table 2.6 is 

meant to give an overview of the requirements coverage, grouping them according to their relation to 

the ABI macro challenges described at the beginning of Section 2.1, and mapping them to the work 

carried out in this case study.  

In particular, requirements ABI_R1, ABI_R2, ABI_R3 and ABI_R5 are directly related to ABI-CH1 and to 

the usage of formal verification techniques in automotive. Therefore, these requirements (that are 

expected to be achieved by the end of the project) are completely covered by the ongoing and future 

work in the context of UNISS solutions. 

Requirements ABI_R4, ABI_R6, ABI_R7, ABI_R8, ABI_R9, ABI_R10, ABI_R11, ABI_R12 (that are 

expected to be achieved by the end of the project) concern the system functioning and the challenge 

defined in ABI-CH2. A subset of these requirements is directly related to implementation of the 

demonstration; in particular: 

● ABI_R6, ABI_R7 and ABI_R8 are technical requirements necessary for the system working, and 

are derived directly from the customer specifications. These requirements are directly covered 

by ABI technical work. 

● ABI_R4, ABI_R11 and ABI_R12 are related to the use of ML for video elaboration, and are 

completely covered by the ongoing and future work in the context of INT solutions. 
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● ABI_R09 and ABI_R10 are currently in standby, and the ABI technical activities to fulfil them 

are under evaluation.  

● All these requirements related to ABI-CH2 (marked with “o” in the Table 2.6), are part of an 

extended set of requirements that is the input for UNISS tools .  

Table 2.6 Case study requirements coverage 

    UNISS INT ABI 

SOL_01 SOL_02 SOL_03 SOL_04 INT-DET INT-DEPTH INT-XAI   

ABI_R1 

ABI-CH1 

x     x         

ABI_R2   x             

ABI_R3     x           

ABI_R5 x      x         

ABI_R4 

ABI-CH2 

 o      o x x x x 

ABI_R6 o     o       x 

ABI_R7 o     o       x 

ABI_R8 o     o       x 

ABI_R9 o o o o       x 

ABI_R10 o o o o       x 

ABI_R11 o o o o x   x   

ABI_R12 o o o o x x    

2.7. Evaluation of results considering KPIs 

Table 2.7 depicts the KPI specified for the ABI_CS01 case study: KPI ABI_GEN_3.1_1, which is related 

to the introduction of automated methods and procedures in Abinsula development processes.  

Table 2.7 Case study KPI ABI_GEN_3.1_1 

KPI Identifier: ABI_GEN_3.1_1  Scenario Identifier: Independent 

KPI Description: Automation of processes improves efficiency in performing the specification and 
consistency verification. 

Refined 
AIDOaRt KPI: 

Description: Increase in the percentage of the automated parts of the 
processes which are currently manual (e.g. predictive 
maintenance, generation of test cases). 

Identifier: KPI_3.1 Target ≥ 30% 

KPI Measure: k = n/N - Number of automated procedures (n) versus total number of 
procedures (N). 

KPI Baseline: Source: No procedures were automated at the beginning of the project. 
Value: k0 = 0 

Target: Increase: 100·k ≥ 30%  
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This case study has been developed from scratch in AIDOaRt, as well as the tools and solutions 

described in this chapter, that are still under development. Therefore, they are not mature enough yet 

to be integrated in Abinsula processes. Nevertheless, the work is proceeding well and first experiments 

with automated tools for requirement analysis and check have been done.  

2.8. Planned improvements 

MODELING PROPERTIES AND REQUIREMENTS (UNISS_SOL_01) 

To address the difficulties presented in Section 2.2.1 “Modelling properties and requirements”, we 

intend to focus on the development of automatic mechanisms that can significantly assist the users in 

the translation of (controlled) natural language requirements to PSPs. These mechanisms will offer 

guidance and support throughout the translation process, making it more efficient and accessible. In 

particular, it would enable users with no background knowledge in formal methods and logical 

languages to write requirements in PSP forms and check their consistency, by providing them guidance 

in pattern selection, automate the mapping process, and support the analysis and validation of the 

resulting formal specifications. 

FORMAL VERIFICATION OF NEURAL NETWORKS (UNISS_SOL_02) 

We plan to expand our experimental evaluation by incorporating additional datasets regarding object 

detection tasks. This will allow us to explore a wider range of network architectures and move closer 

to the architectures needed for the ABI case study. Furthermore, we are actively researching ways to 

enhance existing verification methodologies based on abstract interpretation. Our aim is to extend 

these techniques to accommodate the neural network architectures of interest. 

 

● 0-step vehicle detection 
As part of our ongoing efforts to enhance the experimental evaluation of our research, we are 

embarking on a significant expansion by introducing a preliminary step in the object detection process, 

which we refer to as "step zero" object detection. In this context, our primary objective is to perform 

image classification to determine whether an image contains a vehicle or not. This step is particularly 

pivotal due to the inherent complexity associated with neural networks commonly employed for 

object detection. These complexities often render them challenging to validate and verify using 

existing state-of-the-art methodologies. 

The relevance of this task to ABI case study cannot be overstated, as neural networks that have 

undergone formal certification for robustness have the potential to serve as a highly dependable 

emergency detection system. Such a system would excel in identifying the presence of vehicles in close 

proximity to our own, thereby enhancing safety and security.  

Considering that safety is paramount in the automotive domain and emergency response systems, 

accurate image classification plays a vital role in ensuring safety by enabling timely and precise 

responses to potential hazards on the road. This task contributes to reducing accidents, collisions, and 

potentially life-threatening situations, since a rapid and accurate detection of vehicles in proximity is 

essential for making informed decisions. 
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Our specific approach entails addressing the intricacies posed by the Vehicle Detection Image Set3. This 

meticulously curated dataset comprises a substantial collection of 17,760 images neatly categorised 

into two distinct classes: those containing vehicles and those devoid of them. Our overarching plan 

involves leveraging this dataset to train standard convolutional neural networks (CNNs) with the aim 

of achieving proficiency in image classification. Subsequently, we will rigorously assess the local 

robustness of these CNNs using cutting-edge verification tools and methodologies. This meticulous 

process is integral to ensuring that our "step zero" object detection system can reliably and accurately 

identify the presence or absence of vehicles in images, paving the way for more advanced object 

detection stages and contributing to the overall effectiveness of our research in the domain of image-

based vehicle detection and emergency response systems. 

GENERATION OF TEST (UNISS_SOL_03) 

We plan to provide service for automatic test suite generation by using formal methods and automated 

reasoning since they play an important role in increasing the quality, reliability of safety-critical 

systems, by helping in the early detection of errors and failures that will reduce the cost and effort 

involved in testing. 

CONSISTENCY VERIFICATION OF SYSTEM MODEL (UNISS_SOL_04) 

In future work, building upon the ontological representation of system properties, we aim to conduct 

a series of experiments employing knowledge representation techniques and formal methods. The 

goal is to check the consistency of the system's model at design-time, in order to formally ensure their 

correctness and satisfaction by avoiding manual review which is time-consuming and error-prone. In 

our approach, we will address a diverse array of reasoning tasks on models, encompassing satisfiability, 

consistency, and axiom implication. These tasks include checking if certain conditions are possible, 

ensuring everything is logically sound, and seeing if certain statements can be inferred from the initial 

assumptions. By leveraging these techniques, we intend to unlock deeper insights into the system's 

capabilities and limitations, paving the way for more robust and reliable system designs in the 

considered domain.  

2.9. Planned demonstration  

Most of the solutions exploited in this use case are meant to be used by the developers, therefore the 

results of the collaborations with solutions providers are going to be exploited in the implementation 

of the Virtual Rear Mirror scenario. 

The proof of concept that will be shown will consist of three main parts: 

● Image acquisition: a camera that captures 1920x1080 images (HD 1080P). Originally, the data 

related to the camera included a up to 60 FPS stream. Due to the change of the elaboration 

platform (see details in deliverable D5.6) we switched to a different camera with a lower 

stream, but further options will be evaluated. Please, note that for demonstration purposes, 

 
3 https://www.kaggle.com/datasets/brsdincer/vehicle-detection-image-set 
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it will be considered the possibility of simulating the acquisition from a camera using videos 

from a database. 

● Elaboration: the INT-DET and INT-DEPTH solutions will run on the processing platform 

(currently studies to exploit a Xilinx Kria KV260 Vision AI Starter Kit are ongoing).  

● Visualisation: currently, we are working with a 7 inch touchscreen monitor, with 1024 x 600 

resolution. However, we will evaluate the adoption of different screens.  

As already said, most of the solutions exploited in this use case are meant to be used by the software 

developers, therefore it will be considered the possibility of preparing a video to complement this PoC 

and present the work behind it. For INT-XAI, which is meant to work on the results of INT-DET during 

the development phases, it will be possible to set up a parallel PoC: INT-XAI will run on a development 

processing platform and will process some of the detections returned by INT-DET. 
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3. AVL_CS02 case study “AI supported Digital Twin 
Synthesis supporting secure vehicle development 
and testing for novel propulsion systems” 

AVL subdivides its general case study into several sub case studies. In the first version of the use case 

evaluation report, we are focussing on the following sub case studies: 

1. AVL_RDE - Real-Driver Emissions 

2. AVL_TCV - Test Case Verification 

3. AVL_SEC - Learning-based security testing 

4. AVL_ODP - Optimization of Development Processes 

3.1. Case Study description AVL_RDE - Real-Driver Emissions 

Case Study Overview: The current worldwide regulation for car homologation is requiring strict limits 

for emissions, battery range and also battery life-time. The regulation is prescribing tests with real 

driving conditions. This requires car developers to perform real driving tests in different environments 

(simulation, Hardware-in-the-Loop (HiL), testbeds) which also make use of a driver model. The driver 

model needs to reproduce the behaviour of a human driver as accurately as possible. This accuracy is 

critical for getting comparable vehicle behaviours either with a human or simulated driver. Currently 

used model is a simple rule-based parametric model, whose accuracy is not fully sufficient and needs 

to be improved. The deviations between a human driver and a rule-based parametric model mostly 

come from the fact that the human driver has a more complex behaviour that is hard to model with a 

simple algorithm. Each driver has its own specific behaviour that influences the Real Driver Experience 

Key Performance Indicator (RDX KPI), electrical range, mechanical, electrical and thermal durability 

thermal behaviour, battery ageing, emissions and fuel consumption. The differences between different 

drivers should then also be captured as they are relevant factors for the test results. Therefore, a data-

driven model of the driver’s behaviour is needed. A data-driven model is needed to be applicable to 

simulate human-like driving on any arbitrary test route. A data-driven model is also considered as a 

better way to pinpoint differences between different human driver behaviours. 

Industrial interests: The goal of the use case is to estimate important KPIs such as emissions and energy 

consumption of a vehicle driving along an arbitrary route under realistic driving conditions. The 

problem can be split into two components: 

• Estimating the velocity profile of the vehicle along the track. 

• Computing the energy consumption/ emissions from velocity and environmental factors. 

As a simulation expert in the automotive domain, AVL is highly proficient in the latter, leaving only the 

former challenge to handle. 
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Table 3.1 Synopsis of the case study AVL_RDE 

Use case scenario AVL_RDE_UCS1 — Vehicle dynamics isolated speed profile data from real world 
measurements 

 Description: We are developing a method for the generation of a speed driver profile for an 
arbitrary selected driving route by the end-user. Therefore, a fidelity of the 
automatically generated speed profiles of a driver is needed. 

Requirements: AVL_RDE_R01, AVL_RDE_R02 

Tools: AALpy (TUG) 

KPI: AVL_RDE_UCS1_KPI_3.1_1  

Use case scenario AVL_RDE_UCS2 — Basic driver behaviour identification 

 Description: Generation of a driver behaviour model based on the environment events (i.e. 
traffic signs, traffic signalization, traffic conditions, …). Thus, the method should 
automate the generation of driver behaviour. 

Requirements: AVL_RDE_R05, AVL_RDE_R02 

Tools: AALpy (TUG) 

KPI: AVL_RDE_UCS2_KPI_3.1_1 

Use case scenario AVL_RDE_UCS3 — Modelling driver behaviour pattern 

 Description: Modelling of driver’s behaviour patterns in constant speed limit motorway area 
in terms of speed profile is needed. The model should increase the fidelity of 
the automatically generated speed profiles of a driver on a motorway. 

 Requirements: AVL_RDE_R03 

 Tools: AALpy (TUG) 

 KPI: AVL_RDE_UCS3_KPI_3.2_1 

Use case scenario AVL_RDE_UCS4 — Worst Case Emissions Scenario 

 Description: Generated driver behaviour speed profile and driver behaviour model will be 
used to calculate the worst-case emission and compared with the worst-case 
real engine testbed experiments as currently done at the AVL (i.e. without using 
the AI/ML methodology). The model needs to show an increase in quality and 
accuracy of the critical emission estimation generated by the engine testbed 
experiments.  

 Requirements: AVL_RDE_R04 

 Tools: AALpy (TUG) 

 KPI: AVL_RDE_UCS4_KPI_3.2_1  

Table 3.1 is summarising all discussed and potential use case scenarios for the AVL_RDE use case. In 

this section, we will report about AVL_RDE_UCS3, i.e. modelling human driver behaviour on the 

highway. In the demonstrator dedicated to the AVL_RDE_UCS3, we will show a possible driver profile 

for an arbitrary selected driving route at the highway. The integrated traffic conditions, we will select 

from historical data provided by HERE Maps4.  

 
4 https://www.here.com/ 
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3.1.1. Use case scenario AVL_RDE_UCS3 — Vehicle dynamics isolated speed 

profile data from real world measurements 

We are developing a method for the generation of a speed driver profile for an arbitrary selected 

driving route by the end-user. Therefore, a fidelity of the automatically generated speed profiles of a 

driver is needed. 

Challenges 

Modelling the velocity profile of a human driver is not a trivial task. The very fact that the task is not 

of a discriminative nature due to hidden variables (e.g. traffic conditions, exact weather conditions, 

traffic signalization, …) makes this generative ML problem challenging. Moreover, there are a number 

of dataset challenges that must be taken into account when modelling a vehicle's speed profile. 

Namely, recording only one driving cycle is very expensive, time-consuming, and repeatable only to a 

limited extent. Therefore, data is sparse and very often contains missing information.  

To model a signal similar to a velocity profile of human driving along an arbitrarily selected route and 

under different traffic conditions, the following challenges are to be expected: 

• Limited data quantity due to the cost of performing test drives. 

• Limited data quality: not all relevant data features are recorded during test drives. 

• Trade-offs between expressive power and generalisation capabilities of the learned models. 

• Assessing model quality, which previously required an expert. 

Tools  

The driving recordings (i.e. test drives) from different routes are stored in the Smart Mobile Solutions5 

(SMS) tool developed by AVL. Additionally to the real driver recordings, this tool can generate GPS 

tracks augmented by static environment data and even some statistical dynamic data (such as average 

velocity of traffic participants for a given day). The plan is to improve the existing velocity profile 

generation methods of SMS using tools based on AALpy, the automata learning library of TUG. 

3.1.1.1. Summary of preliminary results 

TUG developed a prototype for learning probabilistic behavioural models of human driver behaviour 

from a set of recorded driving cycles (i.e. test drives) enriched by static environment data such as the 

current speed limit and curvature. The tool can also use a learned model to artificially generate new 

behaviour data for new routes (sampling). An example of such generated behaviours for a given route 

is shown in Figure 3.1 along with real measurement data for comparison. 

 

5 https://www.avl.com/it/-/avl-smart-mobile-solutions 
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Figure 3.1 Measured behaviour (light green), behaviour generated from a learned model (solid lines) and 

road features (dashed) for a given route 

The tool models driver behaviour as a probabilistic agent acting on known environment stimuli. When 

generating new velocity data, this model interacts with a track model that is generated from 

augmented GPS data of the target route. The outputs of the driver model serve as inputs for the 

environment and vice versa. 

The driver behaviour is modelled as a Markov Decision Process (MDP), which can be defined by a set 

of states that emit output symbols when active and probabilistic state transitions between states 

which are triggered by inputs. Further, the sets of inputs, outputs and states are finite. For this reason, 

it is necessary to have a discrete representation of the continuous real-world data, as well as a mapping 

between those two spaces. This mapping can be seen as an abstraction method for the real-world 

data. This methodology is illustrated in Figure 3.2. 
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Figure 3.2 Methodology overview 

A main focus was exploring the space of suitable abstractions which involves the selection of relevant 

data fields and number of discretization steps for those fields. Shifted versions of the data can also be 

important features since driving behaviour strongly depends on environment features from future 

positions. This also requires cleaning and preprocessing the provided data, for example to resample 

the data which is given as time series to use a fixed distance step instead. 

The approach developed by TUG uses domain knowledge to aid the learning process. This is done by 

providing a segmentation criterion which is used to split each input trace into labelled segments. The 

labels correspond to different high-level actions such as accelerating or braking. Instead of learning a 

behavioural model of the whole behaviour directly, the approach learns models for each of the actions 

and how they interact with each other. Those models are then combined to get a full driver model. 

The model used to produce the samples shown in Figure 3.1 was trained on 21 test drives on three 

different routes from which we obtained 39 different highway segments with a total of 314 traces with 

a total length of about 1150 kilometres. The inputs are the road type, future and previous speed limit 

and curvature and produces velocity profiles with a resolution of 2.5 km/h and a spatial resolution of 

5 metres. It uses two high-level actions for acceleration and deceleration and has about 100 states in 

total. 
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3.1.1.2. Evaluation of results considering requirements coverage 

 

This use case scenario relates to AVL_RDE_R036. The extraction of traffic conditions as described in 

AVL_RDE_R027 has not been addressed so far. The methodology developed by TUG partly addresses 

AVL_RDE_R018 as it provides a model that can be used to provide human-like driving given an arbitrary 

target route, however only focussing on the highway. We concentrate only on the highway as it is the 

most challenging part of the route for the current available AVL solution. Since the extraction of traffic 

information from the training data is currently not available, the resulting models do not accept 

corresponding inputs. However, this should not be an issue once AVL_RDE_R02 is addressed. The 

approach also does not model the influence of vehicle characteristics on the velocity profile. This was 

not prioritised since the influence of vehicle characteristics on driving behaviour is estimated to be 

small compared to other influences such as driving environment and driving style. 

 

3.1.1.3. Evaluation of results considering KPIs 

AVL_RDE_UCS3_KPI_3.2_1 

Table 3.2 Case study KPI “AVL_RDE_UCS3_KPI_3.2_1” 

KPI Identifier: AVL_RDE_UCS3_KPI_3.2_1 Scenario Identifier: AVL_RDE_UCS3 

KPI 
Description: 

Increase the coverage and quality of the generated measurements of drivers 
behaviour. 

Refined 

AIDOaRt KPI: 

Description: Increase the coverage and quality of actionable feedback for the 
next DevOps iteration. 

Identifier: KPI_3.2 Target  ≥ 25% 

KPI Measure: k = the generated driver profile can be used for different driving routes 

KPI Baseline: Source: AVL SMS Route studio profile of a human driver for different routes 

Value: k0 = Probability of the speed profile generated by the current SMS 
Route studio solution to belong to the distribution of the real driver 
speed profile. 

Target: Increase: 100·Δ/k0 = 100·(k – k0)/k0  ≥ 25%  

 
6 AVL_RDE_R03: Automated multi-source data analysis of the real driving test data such that the relevant 
features of the driver behaviour can be clustered (e.g. highway driving, low speed driving, cornering, braking, 
acceleration,…). To be used for understanding the driving conditions. 
7 AVL_RDE_R02: AI method that will provide better statistics of the environment based on the statistics of the 

real driving recording and data from digital map service 
8 AVL_RDE_R01: Based on the real driving recordings (time based data on vehicle speed, throttle/brake pedals, 
curvature, road gradient, GPS coordinates…) the ML model is trained to simulate human-like driving given a 
target route, vehicle and traffic conditions. During the training of the ML model vehicle characteristics are known. 
Traffic conditions have to be extracted from the recorded data based on the speed profile. Additionally, traffic 
conditions can be estimated based on traffic data provided by AVL partners (digital map service). Thus, driver 
behaviour in constant speed limit areas can be simulated by augmenting the AI based model on top of a dynamics 
simulator. 
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AVL experts have evaluated the results of the developed method, and this visual inspection has shown 

the following: 

1. The driving profile generated by the proposed method significantly better models the driver 

speed profile on the motorway compared to the method currently in use by the SMS Ruoth 

Studio. 

2. The general driving trend generated by the proposed method is hard to distinguish from the 

general driver trend of a human driving on the motorway. 

3. Due to the granularity of the automata approach, the local speed profile generated by the 

proposed method does not show the variations seen in the speed profile of a human driver. 

 

3.1.2. Planned improvements 

We plan to further explore different possibilities regarding the abstraction of the data in close 

collaboration with domain experts to improve the quality of the learned driver models. 

Currently, the approach developed by TUG for learning driver models is applied only to highway 

driving. In future work, this approach could be extended to driving behaviour in general. The main lines 

of work in this direction are: 

● Extending the concept of high-level actions to a multi-level hierarchy. An example for this 

would be a two-level hierarchy with rural driving vs high-way driving at the top level and 

acceleration and deceleration actions on the second level. 

● Combining our approach with ML algorithms such as imitation learning. 

We also plan to investigate methods that use domain knowledge to cope with different traffic 

conditions. This could be done by influencing the process of sampling new traces from a learned driver 

model such that the samples adhere to properties that are characteristic of certain traffic conditions. 

 

3.1.3. Planned demonstration  

 

At the plenary meeting in December, we will present a AVL_RDE_UCS3 demonstrator capable of 

generating a speed driver profile for an arbitrary selected driving route on a highway by the end-user. 

We will demonstrate that generated speed profiles closely correspond to human driving profiles. We 

will show that the generated driving profiles differ among each other, however, each corresponds to 

possible human driving behaviour. We will show how changing the traffic condition affects the 

generated speed profile on the selected route. 
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3.2. Case Study description AVL_TCV - Test Case Verification 

Overview: The AVL SCENIUS Test Case Generator9 is an easy means to generate Advance Driver-

Assistance Systems (ADAS) test cases from abstract scenarios. By enhancing one given scenario - like 

an overtake manoeuvre on a highway - by concrete values for vehicle speeds, distance, etc., thousands 

of test cases can be generated. Since HIL or Vehicle test execution is very expensive, it is crucial to 

select a subset of tests, sufficient to cover all critical situations. SCENIUS provides means to perform 

such a selection. However, we need to be able to test whether the selection performed by SCENIUS 

covers all critical cases while excluding non-critical cases.  

Industrial interests: The validator must determine, with a given accuracy, if a given test case selection 

is adequate without itself requiring executions of all possible test cases. Namely, the number of 

possible scenarios and the range of possible initial conditions for each scenario is growing 

exponentially, so it cannot be exhaustively estimated. The test generator developed at AVL that needs 

to be validated is ML based. Furthermore, the verdict given by the validator must be 

understandable/explainable by humans. Finally, the validator should provide the parameter values 

that lead to critical situations if they are not covered by the test generator. 

Table 3.3 Synopsis of the case study AVL_TCV 

Use case scenario AVL_TCV_UCS1 — SCENIUS Test Case Selection Validator  

 Description: We are developing a methodology that can determine whether the case 
sampled by SCENIUS is in the physically meaningful range and provide the 
SCENIUS user an explanation of the decision.  

By analysing instances of a logical scenario, an analytical/statistical range of 
parameters limited to physically meaningful ones is compared to the sampled 
value of the parameters by SCENIUS. The probability/possibility of sampled 
values being in the physically meaningful range is reported to the user.  

Requirements: AVL_TCV_R01, AVL_TCV_R02 

Tools: DTsynth (AIT) 

KPI: AVL_TCV_UCS1_KPI_3.1_1 

Use case scenario AVL_TCV_UCS2 — SCENIUS parameter recommender 

 Description: We are developing methodology that can provide the SCENIUS user with a set 
of parameters that lead to yet uncovered critical solutions. 

By analysing instances of a logical scenario, we are developing an analytical 
solution that limits the range of parameters to physically meaningful ones. The 
uncovered critical solution is then determined by a novel sampling strategy of 
the parameters values inside determined parameters range. 

Requirements: AVL_TCV_R03 

Tools: DTsynt (AIT) 

KPI: AVL_TCV_UCS2_KPI_3.1_1 

 

9 https://www.avl.com/-/scenius 

https://www.avl.com/-/scenius
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Table 3.3 is summarising all discussed and potential use case scenarios for the AVL_TCV use case. In 

this section, we will report about both use case scenarios. 

 

3.2.1. Use case scenario AVL_TCV_UCS1 — SCENIUS Test Case Selection Validator 

We are developing a methodology that can determine whether the case sampled by SCENIUS is in the 
physically meaningful range and provide the SCENIUS user an explanation of the decision.  

By analysing instances of a logical scenario, an analytical/statistical range of parameters limited to 
physically meaningful ones is compared to the sampled value of the parameters by SCENIUS. The 
probability/possibility of sampled values being in the physically meaningful range is reported to the 
user.  

The purpose is to develop a set of tools and rules that would allow generating critical scenario 

parameters for autonomous vehicle testing. Concretely, autonomous vehicle functions are tested in 

simulation, in virtual traffic scenarios, which are parametrized by dozens of variables. The objective is 

to develop a sound methodology to reduce the parameter space volume significantly, to do more time 

efficient testing. This is done by first identifying where and when the critical situations could occur 

within the simulation, and then using dynamics equations to discard the variables that would not result 

in the actors being at the critical time and space. 

Challenges 

The main challenge is balancing efficiency by reducing the parameter space, with certainty that the 

discarded regions of the parameter space could not have led to a critical or interesting scenario. The 

biggest problem is that the behaviour of the autonomous vehicle function is not known a priori and 

could even be seen as a black box, so the developed methodology needs to be able to work for all 

functions. Next, simulation capabilities are limited in comparison to the space that needs to be 

exploited while testing AD vehicles. Thus, an intelligent selection of testing samples is necessary for 

reliable testing.  

Tools 

The simulation environment used consists of OpenScenario 1.1 scenario files, which are played on the 

esMINI open-source simulator. The SCENIUS tool from AVL supports the creation of scenario files, 

while AIT is developing a Python interface to connect to AVL’s toolchain for the actual parameter 

reduction. 

 

Approach: The proposed solution involves physical constraints of all actors involved in the scenario in 

order to be certain that no critical scenarios are accidentally discarded. The input given is an 

OpenScenario 1.1 file, which is a traffic scenario description file, that serves as a template for the 

individual test cases. The scenario file is used to extract all the relevant high-level information: the 

number of vehicles and Vulnerable Road Users (VRUs), their behaviour (including their trajectories), 

and the trajectory that the Vehicle Under Test (VUT) will undergo. 



   

 

  Page 47 

 

AIDOaRt Project nr. 101007350   

Given the desired trajectories of all actors (including the VUT), critical regions in the map are identified 

by calculating the physical behaviour of scenario participants. For safety-related ADAS functionalities 

(e.g., Automatic Emergency Braking), a critical region would be a part of the map where the vehicle 

could collide with another vehicle or a VRU. Since the behaviour of all other participants is known and 

controlled by the simulator, it is possible to calculate a set of critical times a priori, when other actors 

are within the identified critical areas. We also utilise the notion of Post Encroachment Time (PET) 

denoting the time span when the last VRU leaves the critical area until the VUT enters this critical area. 

Thus, PET defines a measure of criticality and can be used to identify initial values that lead to a low 

PET and, therefore, to a critical situation. 

After identifying all critical areas and times, the Operational Design Domain (ODD) constraints are used 

to calculate parameter ranges which would lead to critical scenarios between the VUT and other 

participants. This approach discards all scenarios which are outside of the ODD of the ADAS/AD 

functionality, which are irrelevant for testing. 

The output will be an intelligent sampling strategy which outputs OpenScenario files fed to the 

simulator. For coverage purposes, a uniform sampling strategy will be employed to explore every 

region of the scenario parameter space. Additionally, active sampling strategies that receive feedback 

on the performance of the ADAS function after each simulation, will be employed for optimization 

purposes trying to find the set of parameters which is most critical. This information is then fed back 

to the teams developing the ADAS functions, or used to create more sophisticated HIL testing. 

 

3.2.1.1. Summary of preliminary results 

 
The above approach has been used on a family of scenarios meant to test an Automatic Emergency 

Braking ADAS function. The scenarios considered typically involve the VUT driving, and then a 

pedestrian crossing the road. As a first step, the solution provided already reduces the parameter 

space of the scenario to just 25% of what was originally considered (i.e., 4x improvement).  

However, as is natural during any solution development, further improvements have been identified 

and are underway. Crucially, if the parameter reduction is done considering the full ODD, then there 

are still many sampled scenarios that do not test the ADAS function in a meaningful way. We started 

to investigate the PET as a measure of meaningfulness of possible parameter sets. Based on the PET 

and the given trajectories of road users and the VUT we were able to come up with a closed form 

solution for the initial position of the VUT. Thus, effectively reducing the parameter space based on 

the “criticality” of the situation at hand for a single scenario. 
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The following Figure 3.3 depicts the result of inverting the mathematical model if we impose, i.e., a 

PET between 0s and 1s. The goal was to derive the starting positions of the VUT which lead to a certain 

PET range. 

Figure 3.3 Straight street scenario, where a pedestrian is crossing the street. 

 

In this use case scenario we are able to decrease the parameter space before any sampling by at least 

70% but still fulfilling the requirement of the PET being in the range [0, 1]. 

 

3.2.1.2. Evaluation of results considering requirements coverage 

We will evaluate the analytical approach by comparing the number of actually sampled scenarios using 

the different sampling strategies without out pre-screening the parameter space that fulfil specific 

criticality measures, i.e. PET in the range of [0, 1] seconds, to the same sampling strategy but with the 

analytical parameter space reduction. This evaluation addresses AVL_TCV_R0110 and AVL_TCV_R0211. 

We introduce the Average Requirement Coverage Score (ARCS) which is then the average of the 

aforementioned relation over N samples. ARCS is directly related to AVL_TVC_UCS_KPI_3.1_1 but also 

taking into account that even when the parameter space is analytically reduced according to the 

requirements, physical parameters, i.e., acceleration, are random variables. 

Recently, we started looking into the possibility to assess the criticality of concrete scenarios a-priori, 

based on the specific parameter values. We will explain this technique by example of the pedestrian-

crossing scenario which is used to test the obstacle avoidance capabilities of automated vehicles: in 

this scenario, the Ego vehicle approaches a point on the road with a defined speed and initial distance. 

At the same time, a pedestrian approaches the same point from a lateral direction with their own 

speed and initial distance. If these speed and distance values are specifically tuned, they will result in 

a collision between the Ego vehicle and the pedestrian. Otherwise, however, the two traffic 

 
10 AVL_TCV_R01: The SCENIUS Test Case Selection Validator must determine with a given accuracy, if a given test 
case selection is adequate. 
11 AVL_TCV_R02: The verdict given by the SCENIUS Test Case Selection Validator must be 

understandable/explainable by humans 
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participants might never come into close proximity to each other. Under the assumption of linear 

motion of both the Ego vehicle and the pedestrian, we create closed-form solutions of different KPIs 

like Post-Encroachment Time or the Distance of Closest Approach (i.e., the closest distance at which 

the Ego vehicle and the pedestrian pass each other by), and we evaluate them based on their capability 

to identify concrete scenarios of low criticality and therefore low relevance. 

 

3.2.1.3. Evaluation of results considering KPIs 

AVL_TCV_UCS1_KPI_3.1_1 

Table 3.4 Case study KPI “AVL_TCV_UCS1_KPI_3.1_1” 

KPI Identifier: AVL_TCV_UCS1_KPI_3.1_1 Scenario Identifier: AVL_TCV_UCS1 

KPI 
Description: 

Reduction of the no-critical test cases using automated examination processes and 
while providing explainability. 

Refined 

AIDOaRt KPI: 

Description: Increase in the percentage of the automated parts of the processes 
which are currently manual. 

Identifier: KPI_3.1 Target  ≥ 30% 

KPI Measure: k = the number of not critical test cases is reduced based on the pre-calculation of 
the physically meaningful restriction. 

KPI Baseline: Source: AVL SCENIUS sampling strategy  

Value: k0 = the number of noncritical test cases generated by the uniform 
sampling strategy utilised in the AVL SCENIUS. Not yet calculated. 

Target: Increase: 100·Δ/k0 = 100·(k – k0)/k0  ≥ 30%  

 

We are currently in the process of validating the a-priori scenario criticality estimation against 
previously generated “full-factorial” test suites which cover the full parameter space. The individual 
concrete scenarios of this test set were created by SCENIUS and the simulations were performed by 
Model.CONNECT and esMINI, using the CARLA autonomous driving stack. 

Regarding AVL_TCV_UCS1, once our a-priori estimation has been shown to provide reliable results, we 
can use it to validate the quality of different test case generation methods. In a further step, we aim 
to integrate it into our Active DoE method to save on simulation time by pre-filtering irrelevant 
concrete scenarios. Nevertheless, our preliminary results show that around 30% of generated test 
cases can be recognised as not critical.  
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3.2.2. Use case scenario AVL_TCV_UCS2 — SCENIUS parameter recommender 

We are developing a methodology that can provide the SCENIUS user with a set of parameters that 
lead to yet uncovered critical solutions. 

By analysing instances of a logical scenario, we are developing an analytical solution that limits the 
range of parameters to physically meaningful ones. The uncovered critical solution is then determined 
by a novel sampling strategy of the parameters values inside determined parameters range. 

3.2.2.1. Summary of preliminary results 

We present a novel generative machine learning approach for the automatic generation of critical test 
cases within a given traffic scenario. This involves producing parameter values that initialise the traffic 
scenario for input into a simulator. A test case is deemed critical when the resulting simulation involves 
high-risk situations, such as the ego vehicle approaching dangerously close to a pedestrian. 
 
Preliminary results show that our Generative based AI approach is capable of generating test samples 
that are only in the physically constrained range of values.  
 

3.2.2.2. Evaluation of results considering requirements coverage 

 

We evaluated the approach introduced in the previous section that addresses AVL_TCV_R0312. The 

evaluation is directly related to AVL_TVC_UCS_KPI_3.1_1, on a specific traffic scenario where the Ego 

vehicle approached a crosswalk with a pedestrian crossing the street (refer to Figure 3.4). The Ego 

vehicle moved parallel to the roadside at a constant distance h and velocity ve, starting l metres away 

 
12 AVL_TCV_R03: The new parameter values given by the SCENIUS parameter recommender must lead to critical 

situations which are not covered by the generated Tests from the SCENIUS test case generator. 
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from the crosswalk. Simultaneously, the pedestrian moved from the roadside with a constant velocity 

vp. The parameters l, h, ve, and vp defined this scenario (denoted as X = { l, h, ve, vp }). 

 

Figure 3.4 - Pedestrian Traffic Scenario 

  

A critical simulation occurred if the Ego vehicle eventually entered a predefined pedestrian safety area, 

defined as a rectangle with specific coordinates in the Cartesian plane (refer to Figure 3.5). 

 

 
  

Figure 3.5 - Cartesian Plane & Safety Area 

 

The validity domains for the parameters were defined as follows: 

         i.            l ∈ [3.4, 100] m 

       ii.            h ∈ [1, 5] m 

     iii.            ve ∈ [20, 60] km/h 

     iv.            vp ∈ [1, 10] km/h 

  

To assess criticality, the Ego vehicle's position (x,y) in relation to the pedestrian's safety area was 

crucial. A test case was considered critical if, at some point T during the simulation, the Ego vehicle 

was in the pedestrian’s safety area, i.e.: 

a)       x ∈ [-3.4, 0.4] m, and y ∈ [-2.65, 2.65] m. 
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If the Ego vehicle was within the safety area at time T, it must have entered the area at some earlier 

time T’ (T’ < T). Since the Ego vehicle moved from left to right and the pedestrian from bottom to top, 

there were two possible scenarios for T′: 

(1)    x = -3.4 m and y ∈ [-2.65, 2.65] m, or 

(2)    x ∈ [-3.4, 0.4] m, and y = 2.65 m. 

Thus, we simplified the criticality constraints to either scenario (1) or (2). To handle this, two test case 

generators could be trained: one for scenario (1) and one for scenario (2). 

 

The test case generator for scenario (1) was trained to sample 100,000 data points whose values are 

constrained by the physic meaningful ones defined above.   

 

The System Under Test (SUT) used the motion equations of the Ego and pedestrian to compute the 

Ego vehicle's y-coordinate when its x-coordinate became −3.4 metres. If the resulting y-coordinate fell 

within the interval [−2.65,2.65] metres, the simulation was considered critical; otherwise, it was not. 

Thus, the SUT outputted the (x,y)-coordinates of the Ego vehicle in the Cartesian plane with the 

pedestrian as origin, where x was fixed and equal to -3.4 m and y was computed as:   

y = h – (l – 3.4)*vp/ve . 

  

To optimise this scenario, the loss function was defined considering the constraints i. – iv. on l, h, ve, 

vp, and the simplified criticality scenario (1) with the constraint on y. The loss function consisted of 

mean squared errors calculated based on these constraints. 

 

3.2.2.3. Evaluation of results considering KPIs 

AVL_TCV_UCS2_KPI_3.1_1 

Table 3.5 Case study KPI “AVL_TCV_UCS2_KPI_3.1_1” 

KPI Identifier: AVL_TCV_UCS2_KPI_3.1_1 Scenario Identifier: AVL_TCV_UCS2 

KPI 
Description: 

Reduction of the number of manually evaluated test cases by automating the 
processes of identifying whether the selected test cases are critical or non-critical. 

Refined 

AIDOaRt KPI: 

Description: Increase in the percentage of the automated parts of the processes 
which are currently manual. 

Identifier: KPI_3.1 Target  ≥ 30% 

KPI Measure: k = The percentage of test cases that should be manually evaluated to determine 
whether the cases are critical or not.   

KPI Baseline: Source: The test case evaluation done in the AVL SCENIUS.  

Value: k0 = 100% (i.e. in the current strategy each test case has to be 
evaluated) 

Target: Decrease: 100·Δ/k0 = 100·(k0 – k)/k0  ≥ 20%  



   

 

  Page 53 

 

AIDOaRt Project nr. 101007350   

 

We used the generator trained as described in the previous section to generate 1000 test cases for the 

pedestrian traffic scenario. Figure 3.6 illustrates these generated test cases, indicating their 

corresponding y-coordinates and time values when the x-coordinate equals -3.4 m. The visualisation 

utilises the parallel coordinates technique, enabling a high-dimensional representation where each y-

axis corresponds to a specific dimension. Each test case appears as a set of connected lines, depicting 

its values on the axes. The top and bottom lines serve as boundary markers for variable validity and 

are not indicative of generated test cases. 

 

Figure 3.6 - Generated Test Cases 

 

Figure 3.6 illustrates that all generated test cases fell within the defined validity ranges (i. – iv.) outlined 

in the previous section. Additionally, all simulations were critical, leading to y-values within the 

pedestrian’s safety area. 

However, it is evident that the generated test cases did not cover the complete validity ranges of all 

scenario initialization variables. Among these variables, the lateral distance (h) of the Ego vehicle from 

the roadside, and to some extent, the velocities (ve and vp) of the Ego and pedestrian, showed better 

coverage within their validity ranges. On the other hand, the initial distance (l) of the Ego vehicle from 

the crosswalk had relatively poor coverage. This limitation can be attributed partially to the quality of 

the test case generator and potentially to the absence of solutions in certain regions of the input search 

space. This shortfall might arise due to the validity range limits being set without considering dynamic 

relationships between the variables. 

To enhance the quality of the trained test case generator concerning validity range coverage, it might 

be beneficial to encourage the generator during training to produce output values that not only fall 

within the defined ranges but also exhibit maximum variability, if necessary. 
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3.2.3. Planned improvements 

Both approaches, however, are highly specific to the individual logical scenarios and a KPI that works 

for one scenario might not be applicable to the other. To illustrate this, let’s examine the Target-

Deceleration scenario which is used to validate distance-keeping: here, a Target vehicle travels in front 

of the Ego vehicle. At some point, the Target vehicle starts decelerating for a certain amount of time, 

reducing its speed to a defined final speed. Assuming linear motion for both cars, the Distance of 

Closest Approach KPI is not applicable in the same form as before, but splits into three distinct cases: 

if the speed of the Ego vehicle is lower than the final speed of the Target vehicle, both vehicles will 

drift apart over time. If the speed of the Ego vehicle is equal to the final speed of the Target vehicle, 

they will maintain a fixed distance. If the speed of the Ego vehicle is higher than the final speed of the 

Target vehicle, both vehicles would eventually crash if linear motion was maintained. Only in this third 

case, the Ego vehicle would have to intervene in order to prevent a crash.  

Generalisation of the method is planned for future research. 

 

3.2.4. Planned demonstration  

At the Dec 23 AIDOaRt plenary meeting, we will present a demonstrator capable of removing non-

critical test cases (AVL_TCV_UCS1), as well as a demonstrator capable of generating only test cases 

that may lead to a critical situation within physical constraints (AVL_TCV_UCS2). 

3.3. Case Study description AVL_SEC - Learning-Based Security Testing 

Overview: With the increasing importance of software and the trend of connected vehicles's security 

issues become more and more in the focus of vehicle tests. In AIDOaRt, therefore, AI-supported 

methods for vehicle security tests should be developed for both vehicle life time phases development 

and usage. 

Industrial interests: A vehicle consists of many heterogeneous components that communicate with 

each other via communication protocols, which can exhibit a sizable amount of vulnerabilities. In 

practice, models prove to be an efficient tool for stateful testing. Creating these models manually and 

keeping them up to date is tedious. To overcome this challenge, automata learning techniques should 

be used to automatically infer such behavioural models. However, applying these techniques to learn 

real communication protocol implementations requires an interface that ensures reliable testing. 

Learning wireless protocols is complicated by the fact that the connection is not reliable, e.g. due to 

packet loss or delayed transmissions. Later, we will also explore wired communication protocols, e.g. 

via the CAN interface, as well as specialised V2X (Vehicle-to-X) communication protocols. The goal is 

to streamline the learner in a manner that one learning framework can use different adapters and 

therefore the same interface can be used to learn a multitude of different protocols. 

Another challenge is to develop model-based security testing techniques that can explore unexpected 

behaviour but also verify the absence of security issues. This also includes the challenge of creating a 
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sufficient security specification to successfully apply model checking. To allow for efficient zero-input 

testing, we aim for using the learnt model to guide a model-based fuzzing framework. 

Table 3.6 Synopsis of the case study AVL_SEC 

Use case scenario AVL_SEC_UCS1 — Learning-based model checking for security testing 

 Description: We develop an automata learning (and poss. ANN-plausibility checked)-test 
case generator that uses fuzzing and model checking to use traces of 
specification violations. 

Requirements: AVL_SEC_R01, AVL_SEC_R02, AVL_SEC_R03, AVL_SEC_R04 

Tools: AALpy (TUG) 

KPI: AVL_SEC_USC1_KPI_1.1_1, AVL_SEC_USC1_KPI_1.2_1 

Use case scenario AVL_SEC_UCS2 — Machine-learning based anomaly detection for automotive 
systems 

 Description: We develop a feedbacked fuzzer based on an anomaly detection-enhanced test 
oracle. We train an ANN to learn the normal behaviour of a CAN network and 
try to find anomalies that occur when fuzz-testing the same. 

Requirements: AVL_SEC_R05, AVL_SEC_R06, AVL_SEC_R07 

Tools: DT_synth (AIT) 

KPI: AVL_SEC_USC2_KPI_3.2_1, AVL_SEC_USC2_KPI_4.2_1 

Use case scenario AVL_SEC_UCS3— Machine-learning based anomaly detection for automotive 
systems 

 Description: We develop a remote, live-data fuzzer based on AVL_Sec_UCS2. 

 Requirements: AVL_SEC_R08, AVL_SEC_R09 

 Tools: Device.Connect (AVL) 

 KPI: AVL_SEC_USC3_KPI_3.1_1 

 

Table 3.6 is summarising all discussed and potential use case scenarios for the AVL_SEC use case. In 
this section, we are reporting about AVL_SEC_UCS1. 

 

3.3.1. Use case scenario AVL_SEC_UCS1 — Learning-based model checking for 
security testing 

 

We develop a test case generator based on automata learning (including ANN-plausibility checks) that 
uses fuzzing and model checking to use traces of specification violations. 

The goal of this use case scenario is to develop a learning-based testing toolkit that (1) learns 

behavioural models of communication protocols used for in-vehicle communication, and (2) includes 

a model-based testing and verification framework. 

Challenges 

First, we need to learn behavioural models of communication protocols. In-vehicle communication 

comprises different protocols. As a first step, we will focus on wireless protocols used for car access, 
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e.g. Bluetooth Low Energy (BLE) or the NFC protocol. Later, we will also explore wired communication 

protocols, e.g. via the CAN interface and specific V2X protocol(s).  

Creating a testing and verification framework for these protocols introduces challenges at a different 

level. The testing framework should create test cases for security-critical scenarios. For this, we 

develop a model-based framework that allows for using the same interface for different protocols 

(using different adapters) and that is able to automatically hand over the model to a model checker 

(e.g. NuSMV) or a stateful fuzzing framework to enable black-box testing. 

 

3.3.1.1. Summary of preliminary results 

We developed a stateful black-box fuzzing technique for testing BLE devices. We introduce learning-

based fuzzing as a novel security testing technique that combines automata learning and fuzz testing. 

Fuzzing is a security testing technique where (pseudo-) random inputs are executed on the system 

under testing in order to reveal unexpected behaviour such as crashes. Figure 3.7 describes our 

learning-based fuzzing framework for a System-Under-Test (SUT) running a BLE stack in a two steps 

procedure. In the first step, we learned the behavioural models of BLE stack implementations. For the 

learning procedure, we created a BLE interface that included another BLE device that allowed us to 

communicate with the SUT by sending customised BLE packets and receiving the corresponding 

responses. The developed learning framework uses active automata learning algorithms provided by 

the Python library AALpy to learn behavioural models. In addition, the learning framework 

implemented handling procedures for lost and delayed packets. The learnt behavioural model then 

built the basis for the second step: model-based fuzzing. In model-based fuzzing, we tested the 

conformance between the learned behavioural model and the BLE device using a fuzzing test suite that 

provides state-coverage. To generate fuzzed inputs, we modified BLE packets such that they include 

invalid and boundary values.  

We evaluated our learning-based fuzzing technique on six different BLE devices. The selected BLE 

devices are standard BLE devices from different manufacturers, including also different boards from 

the same manufacturer. A first result of our learning-based fuzzing technique was that all learned 

behavioural models of the BLE stack implementations were different. Hence, automata learning can 

be used to fingerprint black-box devices. Model-based fuzzing of these investigated BLE devices 

uncovered reliability issues in four out of six devices where BLE packets could be sent causing the 

tested devices to crash. Furthermore, new states were discovered through fuzzing. 

As a next step, we evaluated whether the learning-based fuzzing approach can be also applied to 

already existing software systems in the automotive industry. In another case study, we learned the 

BLE devices implemented in a Tesla Model 3. The Tesla Model 3 uses BLE as one method for the car 

access. Therefore, also the corresponding key fob uses BLE. We learned the BLE device installed in the 

car as well as in the key fob. The learned models have eleven states and were behaviourally equivalent. 

The learned model distinguishes again from all other learned BLE devices of the previous case study. 

Learning of the BLE devices implemented in the Tesla Model 3 took approximately 87 minutes.  
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Figure 3.7 Two-step learning-based BLE Fuzzing Framework 

 

3.3.1.2. Evaluation of results considering requirements coverage 

 

The developed solution fulfils AVL_SEC_R0113 by using automata learning algorithms to derive state 
models of protocols on SUTs (to be precise at time of writing BLE communication protocols on 
BlueTooth interfaces of IoT devices). For AVL_SEC_R0214, AVL created a suitable dataset for training an 
ANN. It contains traces of CAN Bus data from a known vehicle and can be labelled with a so-called Can 
DataBase Container file and contains multiple scenarios of typical driving manoeuvres. This Dataset 
will then be subsequently used to fulfil AVL_SEC_R0315 to create a test oracle that is usable for 
cybersecurity testing and is able to detect anomalies in the CAN Traffic while a test is executing. The 

 
13 Use automata learning and ML techniques to derive SUT models 
14 Use an ANN to perform plausibility checks on models 
15 Train ANN on SUT topology discovery using test observation 
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model checking component (AVL_SEC_R0416) is future work and will be implemented in the last 
AIDOaRt period. 

3.3.1.3. Evaluation of results considering KPIs 

For KPI_1.1 (Table 3.7), we use the learning for BLE protocols as a basis. Having successfully learned 

models, k>1 the KPI has been met 100·(k – k0)/k0 = 100·(1 – 0.1)/0.1 = 900 (Target ≥ 100).  

KPI_1.2 (Table 3.8) cannot be measured yet, because so far only the model derivation part has been 

implemented. The formal specification is yet to be done. 

AVL_SEC_USC1_KPI_1.1_1 

Table 3.7 Case study KPI “AVL_SEC_USC1_KPI_1.1_1” 

KPI Identifier: AVL_SEC_USC1_KPI_1.1_1 Scenario Identifier: AVL_SEC_UCS1 

KPI 
Description: 

Increase the number of learned protocol implementation models. 

Refined 

AIDOaRt KPI: 

Description: Improvement of the time required for identification of design 
problems thanks to the analysis of the collected data. 

Identifier: KPI_1.1 Target  ≥ 25% 

KPI Measure: k = Number of learned models 

KPI Baseline: Source: Current testing platform: number of learned models / number of 
total models 

Value: k0 = 0.1 (1 out of 10) 

Target:  Increase: 100·Δ/k0 = 100·(k – k0)/k0  ≥ 100%  

AVL_SEC_USC1_KPI_1.2_1 

Table 3.8 Case study KPI “AVL_SEC_USC1_KPI_1.2_1” 

KPI Identifier: AVL_SEC_USC1_KPI_1.2_1 Scenario Identifier: AVL_SEC_UCS1 

KPI 
Description: 

Increase the number of found Counterexamples. 

Refined 

AIDOaRt KPI: 

Description: Improvement of the early detection of system deviations. 

Identifier: KPI_1.2 Target  ≥ 30% 

KPI Measure: k = Number of deviations detected 

KPI Baseline: Source: Specification vs. implementation: number of detected deviations / 
number analysed models 

Value: k0 = 0.1 (1 out of 10) 

Target: Increase: 100·Δ/k0 = 100·(k – k0)/k0  ≥ 30%  

So far, examined systems under scrutiny are according to the given specifications. Still through the 

learned models, it is expected that the found deviations will rise during the project's course. 

 

 

 
16 Use formal model checking methods to derive test cases out of a system model 



   

 

  Page 59 

 

AIDOaRt Project nr. 101007350   

3.3.2. Planned improvements 

For the next cycle, we plan for additional model learned (e.g., for a V2X protocol) as well as a model-

based automated checking method that enables the testing framework to check the system-under-

test for (a) specified security properties and/or (b) deviations from a specification (e.g., modelled from 

a standard). Furthermore, we plan for integrating the learned models into a model-based fuzzer, but 

this is of lower priority than the model checking and therefore only conducted if the timely resources 

are available after the model checking implementation. 

3.3.3. Planned demonstration  

Until the end of the project, we plan a demonstrator for a standards-based specification checker for 

BLE that is able to compare a learned model with a specification model built after the BLE standard. In 

addition, a preliminary version of this demonstrator may be shown at upcoming AIDOaRt plenary 

meetings.  

The demonstrator will consist of a working BLE learning setup that is able to infer a model in the form 

of a (Mealy) state machine of an actual implementation from a BLE device in an active, black-box 

manner and a Mealy model of the BLE specification modelled after the BLE standard. The demonstrator 

will automatically compare the behavioural equivalence of both models using bisimulation and/or 

trace equivalence. Therefore, the demonstrator will be able to automatically assert BLE devices for 

their compliance with the standard, as well as pointing out possible deviations in the form of traces of 

the input that lead to the deviation and the respective output in dissensus with the standard. 

3.4. Case Study description AVL_ODP - Optimization of Development 
Processes 

Overview: The need for and trend towards traceability among data artefacts in the development of 

complex CPS will in the foreseeable future lead to structured data being created during development, 

i.e., data that precisely captures how the product under development evolves along the development 

process. The two main questions addressed in this use case are: (1) How to synthetically create such 

structured data (in sufficient volume required for training state-of-the-art ML algorithms)? (2) How to 

train process models on that data for optimising development projects? 

Industrial interests: The main driver for creating such process models is to utilise data generated in 

(past) development projects to make CPS development more effective (e.g. by detecting trends in a 

product development project that likely will not bring the product under development closer to 

product target fulfilment and thus should be avoided) and more efficient (e.g. by identifying tests that 

could be replaced by simulation while still providing the same information gain). 



   

 

  Page 60 

 

AIDOaRt Project nr. 101007350   

Table 3.9 Synopsis of the case study AVL_ODP focusing the scenario AVL_ODP_UCS2 

Use case scenario AVL_ODP_UCS2 ML-based KPI prediction 

 Description: Learn a data-driven process model that predicts the evolution of product’s 
related KPIs (e.g. vehicle energy consumption) and parameters (e.g. vehicle 
weight) in an ongoing development project. The process model is trained with 
past finished projects and parameterised with the history of the current 
ongoing project. With this model, the project manager can check whether the 
project is or is not on track to reach all KPI targets and can take appropriate 
measures. 

Requirements: AVL_ODP_R02 

Tools: MOMoT (JKU), Modeling of processes and knowledge base (UCAN) 

KPI: AVL_ODP_UCS2_KPI_1.1_1 

In this section, we will report about the AVL_ODP_UCS2 use case scenario as outlined in Table 3.9. 

 

3.4.1. Use case scenario AVL_ODP_UCS2 — ML-based KPI prediction 

In this use case scenario, we want to train a data-driven process model that predicts the evolution of 
product-related KPIs (e.g. vehicle energy consumption) and parameters (e.g. vehicle weight) in an 
ongoing development project (see Figure 3.8). The process model is trained with past finished projects 
and parameterised with the history of the current ongoing project. With this model, the project 
manager can check whether the project is or is not on track to reach all KPI targets and can take 
appropriate measures. 

 

 
Figure 3.8 Evolution of product-related KPIs along the vehicle development process (VDP). The vertical grey 

bar indicates the present time in a project. History data from the project is used for parameterization of a 

model, which predicts the KPI evolution into the future of the project. 

 

Challenges 

The development of CPS products – due to their inherent complexity – typically contains inefficient 

development phases like dead ends (i.e., when teams at some point in time realise that their initial 

solution concept does not work, so that they have to start over again). Ideally, these phases should be 

identified as soon as possible and be omitted to make development more efficient. 
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This use case scenario addresses the following challenge: is it possible to emulate development 

projects containing these flaws/patterns in order to synthetically create realistic data (such as outlined 

in Figure 3.9) that can be used for training ML algorithms? Figure 3.9 schematically shows the evolution 

of one KPI along the vehicle development process, including typical patterns and flaws: KPI evolution 

in real-world projects shows an oscillation around and a convergence towards the target value 

associated with the KPI. Segments in which the KPI evolves away from the target can be considered as 

flaws, because development effort is spent without getting the product closer to target fulfilment. 

 

Figure 3.9 Possible evolution of a vehicle KPI (here: energy consumption) over various vehicle development 

process (VDP) phases 

The solution approach for this challenge is to simplify the CPS development process to a high-

dimensional optimisation problem, which means: product parameters, which encode product design, 

are iteratively optimised until all product KPIs can meet their individual target values. This renders 

optimisation solution components applicable to this challenge. 

Tools 

To set up the demonstrator for this case study, we want to use JKU’s MOMoT solution component, 

specifically its model-based optimisation capabilities. 

3.4.1.1. Summary of preliminary results 

To be able to emulate CPS development projects – more precisely, vehicle/automotive development 

projects in this use case scenario – a transformation of product parameters (input) to product KPIs 

(output) is required. In real-world development projects this transformation is done by a multitude of 

different simulations and tests. In this use case scenario, to reduce effort, only one or a few simulation 

models in the form of simulation-tool-neutral FMU (Functional Mock-Up Unit)17 simulation models 

shall be used to compute KPIs out of parameters. 

To emulate vehicle development projects based on FMU simulation models, we need to create a 

framework to manipulate the product parameters that parameterize FMU simulation models, execute 

the simulation model with these parameters and compute the corresponding KPI values. 

 
17 Functional Mock-up Interface (fmi-standard.org) 

https://fmi-standard.org/
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AVL is working on a suitable simulation model (i.e., simple enough to build a proof-of-concept and 

complex enough to emulate a non-trivial product development process) that shall represent the 

product under development. 

JKU has started integrating (in MOMoT) an existing metamodel for FMU simulation models18 and 

especially FMU parameters, aiming at reusing the results from the AIDOaRt’s parent project 

Megamart219. 

For executing the parameterized simulation models, a suitable FMU execution environment needs to 

be set up and connected with MOMoT, such that MOMoT provides the inputs (parameters) for a new 

simulation run, triggers the execution of the simulation run, and receives the results of the simulation 

run in order to compute the parameters for the next iteration of the simulation. Different FMU 

execution frameworks exist, from open source frameworks to proprietary ones such as CRUISETM M or 

Model.CONNECTTM by AVL. JKU is assessing these alternatives in order to find a suitable framework for 

connecting with MOMoT. 

3.4.1.2. Evaluation of results considering requirements coverage 

The demonstrator currently under development has the target of emulating the evolution of product 
parameters and product KPIs, which shall ultimately provide the required training data for ML models. 
The demonstrator contributes to the requirement AVL_ODP_R02 in two ways: 

1. For a given set of initial optimisation hyperparameters, it shall emulate a development project, 
i.e., forecast the evolution of both product parameters and product KPIs for the whole project. 
The associated metric for measuring the requirements coverage is: are the generated 
datasets/forecasts realistic, i.e., do they exhibit features and flaws also observed in real-world 
data? This metric can only be evaluated qualitatively by domain expert assessments based on 
expert experience. 

2. It will provide the basis, i.e., the training datasets (emulated projects for different sets of 
hyperparameters), for creating a second set of models: data-driven process models, which 
shall be able to forecast the KPIs for the remainder (beginning at any point in time in the 
project) of unknown development projects, i.e., development projects with unknown 
hyperparameters. The associated metric for evaluating the requirements coverage is rather 
simple: how well is such a model capable of forecasting KPIs for the remainder of a 
development project which it has not seen during training. This metric can be evaluated by 
separating the datasets generated in (1) into a training and test dataset and measuring the 
deviations of KPI predictions for the test datasets. 

3.4.1.3. Evaluation of results considering KPIs 

The demonstrator currently under development is the basis for the development of the data-driven 

process models the performance of which are evaluated by KPI_1.1, in the sense that the current 

demonstrator will provide the training data required for creating data-driven process models. 

 
18 org.eclipse.papyrus-moka/fmu metamodel.ecore at 49b8b5549283a32ba3db2cf165fb4ee2dd18fa15 · 
megamart2/org.eclipse.papyrus-moka (github.com) 
19 MegaMart2 - MegaModelling at Runtime (megamart2-ecsel.eu)  

https://github.com/megamart2/org.eclipse.papyrus-moka/blob/49b8b5549283a32ba3db2cf165fb4ee2dd18fa15/bundles/fmi/tools/org.eclipse.papyrus.moka.fmi/model/fmumetamodel.ecore
https://github.com/megamart2/org.eclipse.papyrus-moka/blob/49b8b5549283a32ba3db2cf165fb4ee2dd18fa15/bundles/fmi/tools/org.eclipse.papyrus.moka.fmi/model/fmumetamodel.ecore
https://megamart2-ecsel.eu/
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Thus, KPI_1.1 cannot be measured yet. The measurement of KPI_1.1 requires the creation of data-

driven process models that can predict the parameter and KPI evolution for the remainder of a 

development project. The time how far into the future the model will be able to correctly predict the 

KPI evolution (compared to the test data) will be equal to the improvement of the time required for 

the identification of misleading trends, since the model will then also be able to predict 

flaws/inefficiencies in the future, which can then be at present identified by projects managers. 

AVL_ODP_UCS2_KPI_1.1_1 

Table 3.10 Case study KPI “AVL_ODP_UCS2_KPI_1.1_1” 

KPI Identifier: AVL_ODP_UCS2_KPI_1.1_1 Scenario Identifier: AVL_ODP_UCS2 

KPI 
Description: 

Improvement of the time required for the identification of misleading trends, thus 
enabling earlier decision making and saving development time and effort. 

Refined 

AIDOaRt KPI: 

Description: Improvement of the time required for identification of design 
problems thanks to the analysis of the collected data. 

Identifier: KPI_1.1 Target  ≥ 25% 

KPI Measure: k = Time required for the automated identification of design problems based on 
KPI prediction. 

KPI Baseline: Source: Domain expert’s experience 

Value: k0 = 1-2 days 

Target: Decrease: 100·Δ/k0 = 100·(k0 – k)/k0  ≥ 25%  

 

3.4.2. Implementation activities transversal to AVL_ODP_UCS2 use case scenario 

During the discussions at recent plenary meeting20 obvious similarities were observed between this 

use case scenario and VCE_UCS_02, due to using the same underlying technologies and aiming to solve 

similar issues: both use case scenarios focus on the optimization of simulation model output by 

changing either the simulation model or the simulation model inputs in a systematic way. Particularly, 

the use of the tool MOMoT from JKU was identified as the main solution technology in both use cases. 

Therefore the decision was made to merge the different concrete hackathon challenges and work 

jointly towards the same problem with the same solution provider, so that value could be gained via 

common problems and common discussions, while letting the solution provider employ the tools more 

readily via commonly agreed activities instead of addressing separate problems with the same tool. 

3.4.2.1. Summary of preliminary results 

So far the collaboration has been defined and regular meetings are organised between VCE/AVL/MDU 

and JKU who provide the proposed solution in the form of MOMoT. The preliminary results are the 

merging of the use case problems and a preliminary plan and implementation of the MOMoT tool for 

FMU execution and eventual parameterization and optimization of models. 

 
20 So-called hackathons have been organised in the course of the plenary meetings, which significantly supported 

cross-use case discussions and potential horizontal use case integrations. 
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3.4.3. Planned improvements 

Concerning the utilisation of optimization and MOMoT for emulating development projects, the 

planned improvements are mainly about refining the demonstrator to make it and its data output 

more realistic. For example, refining the Ecore metamodel that defines optimization targets, model 

transformation rules and transformation constraints. Another planned improvement is researching 

whether co-evolution approaches are applicable to the demonstrator, especially for emulating real-

world simultaneous/concurrent development. 

With the chosen approach of emulating product development by casting it as a mere optimization 

problem, many characteristics of product development processes are, however, sacrificed to problem 

simplification. For example, development processes define specific process roles, phases, 

development streams, milestones, quality gates etc. Thus, as a countermeasure, we want to create a 

formal process model. UCAN’s modelling of the processes and knowledge base solution component 

shall contribute to this use case by capturing and modelling the process and involving KPIs, parameters, 

and simulation models. For creating formal development process models, the discussions among AVL 

and UCAN have shown that it is necessary to capture different aspects of a development process (e.g., 

available and consumed ressources) for such a process model to be useful for process optimization. 

Available plain modelling languages for technical systems (e.g. UML or SysML) might not be able to 

capture these aspects, while dedicated process modelling languages might not be able to capture the 

required aspects of the technical system developed in the product development process. The 

combination of SysML/UML with the MARTE profile has been identified as a promising starting point 

to create a formal process model capturing different relevant aspects of a technical product 

development process. Once a process modelling language is chosen, JKU can define model 

transformation rules to automate the generation of optimised process models. 

If there is enough time left in the remainder of this research project, the task of identifying process 

faults/flaws in the predicted KPI data could be automated. This requires manually annotating 

flaws/faults in the training data and training a classification model on that data. 

3.4.4. Planned demonstration  

Until the end of the project, a demonstrator shall be developed that is both capable of: 

● generating product parameter and product KPI time series data that shows similar patterns 

and features as data observed in real-world development projects; 

● forecasting product KPI evolution and particularly flaws in KPI evolution, for unseen time series 

data. 

At the next plenary meeting, a PoC is planned to be shown demonstrating two aspects of this use case: 

● the optimization of product design (as encoded by product parameters) starting from an initial 

random product design/parameter set such that the product KPIs can meet their targets; 
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● the different consecutive iterations/generations during the optimization process ordered and 

plotted over time, show an evolution of parameters and product KPIs with respect to time that 

is similar to patterns observed in real-world development projects. 
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4. ALSTOM_CS03 (BT_CS03) case study “DevOps for 
Railway Propulsion System Design” 

Note: Bombardier Transportation (BT) has been acquired by Alstom. The name of the company and 

the use case have been changed accordingly, but the abbreviations have been preserved (BT_*) for 

consistency with previous deliverables). 

4.1. Case Study description 

Alstom use case scenarios are formulated with the goal to automate data processing and data transfer 

between different stages of development process, multi-physics modelling and test data correlation. 

The potential outcomes of such an endeavour are improved design and development chain resulting 

in more efficient processes in test facilities, reduction of the overall costs, energy efficiency, etc. 

Within the AIDOaRt project, the Alstom case study incorporates two specific use case scenarios: in use 

case scenario 1, Alstom aims to automate and improve the requirements engineering process using an 

AI/ML solution that would facilitate analysis of new requirements. In use case scenario 2, by using 

AI/ML algorithms Alstom aims to automate parametrization of thermal models in a propulsion control 

system. Today this is performed manually by adjusting parameter settings during system testing.  

The synopsis of the case study ALSTOM_CS03 (BT_CS3) can be found in Table 4.1 below. 

Table 4.1 Synopsis of the case study ALSTOM_CS03 (BT_CS3) 

Use case scenario BT_UCS_1 — Requirement Engineering Recommender System 

 Description: Improved analysis of the customer specifications for critical requirements and 
use of AI to provide recommendations for suitable actions. 

Requirements: BT_R01 

Tools: Requirement Ambiguity Checker (MDU), VARA (RISE), Requirements Similarity 
Checker (SOFT) 

KPI: BT_UCS_1_KPI_3.1_1, BT_UCS_1_KPI_4.1_1, BT_UCS_1_KPI_2.2_1 

Use case scenario BT_UCS_2 — Model Parametrisation 

 Description: This use case scenario corresponds to parametrization of the machine thermal 
model in the propulsion system drive during physical system test. Using AI/ML 
enabled algorithms, it is aimed that the manual tuning procedure steps and the 
man hour involved in the temperature rise test could be reduced. 

Requirements: BT_R02 

Tools: CAMEO (AVL), Tool from MDU  

KPI: BT_UCS_2_KPI_3.1_1, BT_UCS_2_KPI_4.1_1, BT_UCS_2_KPI_4.2_1 
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4.2. Use case scenario BT_UCS1 

Railway traction equipment consists of complex hardware and software elements that in their 
aggregation constitute cyber-physical systems. The business is driven by a bidding process, typically in 
the form of public procurement. Customers, i.e., railway rolling stock owners and/or operators issue 
detailed specifications for the complete trains out of which some directly affect traction systems and 
others can result in derived requirements. Despite the diversity between customers, most 
specifications address the same features and design aspects. However, there is a great diversity in the 
way the requirements are formulated. 

Today, as a consequence, vast numbers of customer requirements are manually analysed, allocated 
and further broken down. To be carried out effectively, this usually requires highly experienced bid 
and customer project engineers and it remains a very time-consuming task. 

The goal is to provide appropriate recommendations to the bid and project engineers in an automated 
manner based on requirement datasets for standard products and past projects. This includes finding 
requirement defects (such as ambiguities, vagueness…), allocating requirements to different teams 
and responding to the requirements (can we comply with it or not?).  

4.2.1. Summary of preliminary results 

The work on this use case scenario focuses on several sub-tasks of requirement engineering in 

railway traction domain: 

● Requirement identification: requirements are typically obtained from customers as large text 

documents in various formats. The first task is to split the text into individual potential 

requirements, which may encompass one or more sentences. Splitting into too small chunks 

of text may render each requirement meaningless, whereas splitting into too large chunks of 

text may result in multiple requirements lumped together. The second task is to distinguish 

between requirements and background information; requirements must be implementable 

and verifiable. Taken together, this process is known as requirement identification. 

● Ambiguity checking: requirements that refer to past experiences, accepted practices, 

unspecified standards, etc. are ambiguous and unverifiable. It is important to flag such 

requirements early so that they can be clarified by the customer. 

● Similarity checking: if an equivalence can be established between a new requirement and a 

requirement in a standard product or a past project, a recommendation can be made by the 

system that such requirements can be accepted without further analysis. Furthermore, 

requirement qualification (i.e. text describing how such a requirement can be fulfilled) and 

proof (i.e. a reference to a specific design document or a test report) can be suggested by the 

system. Note that the final decision will still lie with the requirement engineers, but making 

automatic suggestions (with various degrees of certainty) will greatly simplify and speed up 

their work. 

● Team allocation: each requirement not immediately accepted by the requirement engineers 

needs to be forwarded to an expert in a specific area, such as traction control (software), 
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converter design, safety, etc. Automatic team allocation will greatly speed up requirement 

processing. Note that a certain level of erroneous allocations is acceptable since the experts 

can manually reassign the requirements if needed. 

Within the AIDOaRt project, the focus is on investigating the problems and suggesting solutions 

(implemented as demonstrators) that would use state-of-the-art technologies to solve domain-

specific problems. Thus, the development steps are: 

● Identifying the tasks and available data for analysis.  

● Developing, training, and validating ML models for each task.  

● Solving the problems of integration between the suggested models and existing engineering 

practices and tools.  

We have currently completed the first step together with the solution providers, the solutions 

providers have suggested ML models for each task and are in the process of refining them. 

Development and first evaluation of the tools & trained ML models have been done using real-

life data sets provided by Alstom. The next steps include validation using broader data sets and 

integration in the form of demonstrators. 

The following tools have been suggested by the solution providers: 

Requirements Ambiguity Checker (by Mälardalen University, Sweden) 

The tool identifies ambiguous requirements from textual documents using a set of ambiguous 

keywords and patterns and NLP & AI/ML techniques. It was developed using a small amount of 

manually labelled data. The achieved accuracy for the limited data set used for validation is 

around 80%. 

VARA (by Research Institutes of Sweden) 

The tool performs automated similarity analysis and feature reuse recommendation using 

Natural Language Processing (NLP): VARA enables automatic analysis of textual requirements 

for a new project and identifies components and artefacts that can be reused from a previous 

project for the implementation of the new requirements based on similarity analysis. Allocation 

Prediction has achieved 71% accuracy on datasets from multiple projects (data is labelled as 

part of manual requirement engineering process at Alstom). 

Requirements Similarity Checker (by SoftTeam, France) 

The tool supports identification, extraction, and classification of requirements from textual 

documents with NLP & AI/ML techniques. It correctly identifies over 60% of similarity pairs as 

close or related (Alstom projects used for analysis share a large number of similar requirements, 

over 70%).  
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4.2.2. Evaluation of results considering requirements coverage 

The functional requirement BT_R01, defined in Deliverable 1.1 Use Cases Requirement Specification, 

is formulated as follows: “NLP contextual analysis of requirements and match against database of 

responses/solutions”. The proposed solutions directly address this requirement and we can state that 

the requirement coverage will be 100%. The success rate of requirement analysis (i.e., identification 

and ambiguity checking) and matching (i.e., similarity checking) will be determined during validation 

of prototypes. 

4.2.3. Evaluation of results considering KPIs 

The following KPIs have been defined earlier (see, for example, Deliverable 5.6 Use Cases Development 

Report). At the current stage of AIDOaRt tool development, we are dealing with prototypes that have 

been developed and validated using small, manually labelled datasets, and are not yet prepared for 

integration into the Alstom requirement management process. Therefore, it’s not yet possible to 

evaluate these KPIs numerically. The plan is to develop higher fidelity prototypes within the next few 

months and perform validation in the production environment (i.e., with validation will be performed 

by requirement engineers and using full-scale datasets). 

The current state of tool development should be judged as adequate and corresponding to the existing 

work plan, with a good prospect that the tools developed in the AIDOaRt project will reach maturity 

before the end of the project. 

BT_UCS_1_KPI_3.1_1  

Table 4.2 Case study KPI “BT_UCS1_KPI_3.1_1” 

KPI Identifier: BT_UCS_1_KPI_3.1_1  Scenario Identifier: BT_UCS_1 

KPI 
Description: 

Share of automated process steps in customer requirements analysis  

Refined 

AIDOaRt KPI: 

Description: Increase in the percentage of the automated parts of the processes 
which are currently manual (e.g., predictive maintenance, 
generation of test cases).  

Identifier: KPI_3.1  Target  ≥ 30% 

KPI Measure: Customer requirement analysis is an engineering process that follows specific 
guidelines with identifiable steps. The KPI measure is the number of automated 
steps divided by the total number of steps, multiplied by 100. 

KPI Baseline: Source: Step-by-step description of the requirement analysis process 

Value: k0 = 0% 

Target: Increase: k ≥ 30% 

BT_UCS_1_KPI_3.1_1  

Table 4.3 Case study KPI “BT_UCS1_KPI_3.1_1” 
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KPI Identifier: BT_UCS_1_KPI_4.1_1   Scenario Identifier: BT_UCS_1 

KPI 
Description: 

Relative time consumed for customer requirements analysis  

Refined 

AIDOaRt KPI: 

Description: Increase in the percentage of parts of the DevOps process covered 
in the Use Cases with productivity improvement.  

Identifier: KPI_4.1  Target  ≥ 30% 

KPI Measure: Customer requirement analysis is a distinct step and it is possible to report time 
for it separately. The KPI measure is the decrease of time spent, normalised across 
projects (normalisation is needed since different projects have different 
complexity), expressed as a percentage.  

KPI Baseline: Source: Time reporting tool 

Value: k0 = TBD 

Target: Decrease: 100·Δ/k0 = 100·(k0 – k)/k0  ≥ 30% 

BT_UCS_1_KPI_2.2_1  

Table 4.4 Case study KPI “BT_UCS_1_KPI_2.2_1” 

KPI Identifier: BT_UCS_1_KPI_2.2_1  Scenario Identifier: BT_UCS_1 

KPI 
Description: 

Share of data sources accessed and managed automatically for use in the 
customer requirements analysis process  

Refined 

AIDOaRt KPI: 

Description: Increase in the number of available data sources to be actually 
managed and handled in existing engineering practices.  

Identifier: KPI_2.2  Target  ≥ 25% 

KPI Measure: In manual requirement processing, the requirement data set for a new project is 
typically compared to the requirement data set of one past project from the same 
customer or another customer in the same market. In automated requirement 
processing, it can be compared to requirement data sets of multiple past projects. 
The KPI measure is the number of requirement data sets of past projects used for 
requirement analysis of a new project. 

KPI Baseline: Source: DOORS requirement database 

Value: k0 = 1 

Target: Increase: 100·Δ/k0 = 100·(k - k0)/k0  ≥ 25% 

4.3. Use case scenario BT_UCS2 — Automated Model Parameterisation 

Accurate temperature estimation in critical parts of a traction machine is essential for maintaining the 
reliability and safety in real time operation. To deal with, on the test bench, the real time operation is 
replicated to have an accurate estimation of the temperatures. However, it is computationally 
expensive to include physics-based models pertaining to the drivetrain components for estimation of 
all the input parameters. A reduced-order thermal model (abstract lumped parameter thermal 
networks (LPTN) with 4 nodes) with analytical based approaches substitutes this need. However, such 
an approach needs resources of expert attention for feasible parameterization. Today this is done 
manually by iterating parameter settings against measured data during systems testing. With offline 
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parameter identification algorithms based on machine learning methods, accurate motor 
temperatures can be simulated in the test rig efficiently with less manual iteration.  

A dark grey-box lumped parameter thermal network consisting of 4 nodes was considered in this use 
case, as shown in Figure 4.1. The thermal parameters (thermal conductance and capacitance) are 
linearly varying and quasi-state and need to be identified from the measurements. 

 
Figure 4.1 Four-Node Lumped Parameter Thermal Network Model  

A computationally efficient and accurate means for offline temperature estimation is deemed 
necessary for obtaining the thermal model tuning parameters. To solve this problem, wide exploration 
of the state-of-the-art literature on the AI/ML techniques applicable to machine thermal analysis was 
conducted. After defining the challenges and requirements, subsequently a detailed level of 
deliberation with the solution providers during the hackathon challenges, a common understanding of 
the problem has been reached. 

The main challenge includes identifying representative measured datasets that can accurately 
correlate the parameters of the reduced order model in the controller to the actual behaviour of the 
motor. The temperature model under investigation is a so-called grey-box model, whereby the 
structure of the input/output relationship is known to an extent, but some important parameters in 
the model are unknown and cannot be measured directly from the system under test. Moreover, some 
parameters change with respect to the operating point, which is given by the current, temperature, as 
well as the air flow. This means that the unknowns of the model are not scalar parameters but 
functions, and the challenge is to identify these sub-functions. A neural network class called “Symbolic 
Regression Models” was considered as a solution of the parameter identification task. Compared to 
standard regression model identification, which trains the parameters of a neural network with a given 
structure, symbolic regression models allow both the identification of the model structure as well as 
the corresponding regression parameters at the same time. This allows for a limited prior knowledge 
on the unknown sub-functions. Moreover, the implemented algorithm allows for the definition of a 
part of the model structure with unknown sub-functions, which makes this approach suitable to 
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identify grey-box type models without training completely black-box models which do not satisfy the 
required model structure. 

4.3.1. Summary of preliminary results: Solutions proposed by AVL  

In order to optimally parameterise the temperature model parameters, the predictive performance of 
each set of parameter combinations can be trained using AI/ML algorithms. Thereby, the model of the 
Unit Under Test (UUT) - e.g. a Simulink model - can be executed with different parameter combinations 
and the resulting temperature can be compared with the measurements from the original UUT on the 
test bed. The difference between the two signals can be learned by a machine learning model, see 
Figure 4.2. This so-called surrogate model can be used to find the optimal parameters, by using them 
as target functions in optimization algorithms. 

 

 

Figure 4.2 Surrogate modelling approach in AVL CAMEO: model feedback of the UUT, can be learned using 

machine learning techniques 

 

In order to demonstrate the modelling approach, the data and the Simulink model provided by 
ALSTOM as well as other solution providers have been used in order to train initial error models, one 
for the rotor and one for the stator temperature, respectively. An intersection plot of these error 
models is shown in Figure 4.3. Here, two models are shown as a function of conductive and convective 
thermal parameters. It can be seen that those input parameters linked to the resistance/capacitance 
of the rotor have the main effect on the rotor temperature error and the same holds for the stator 
model parameters. 
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Figure 4.3 Black-box modelling approach in AVL CAMEO: model feedback, given by the model error of rotor 

and stator temperature can be modelled as a function of the model parameters 

 This model has been used in order to optimise the function for the optimal parameters. However, the 
parameters used so far as inputs are scalar and not functions of the operating space. We intend to 
generalise this approach in order to use surrogate modelling approaches to find the optimal 
parameters as functions of the UUT state, which is given by motor speed/torque, as well as the current 
temperature.  

4.3.2. Summary of preliminary results: Solution Proposed by MDU 

Data related to the operation of the traction motor, such as motor speed, torque, current, and 
voltage and temperatures, were collected during several driving cycles. The data has been 

preprocessed to synchronise the measurements. Figure 4.4 shows a sample of the preprocessed 
measurements.
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Figure 4.4 A sample of the preprocessed measurements 

A data-driven reinforcement learning-based parametrization method is proposed to tune the 
parameters of the temperature model as shown in Figure 4.5. For each optimization cycle, the off-
policy agent will find the parameters from one driving cycle and one model variant such that the final 
parameters will count for the different operating conditions and model uncertainty. 

Figure 4.5 Reinforcement learning-based parametrization method. 
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A time series neural network has been initially trained to fit the temperature measurements that could 
be used as a black-box temperature model. Figure 4.6 shows the stator and rotor temperature 
measurements with the fitting curves. 

 

Figure 4.6 Fitting the temperature measurements  

Off-policy reinforcement learning agents are employed to adjust the parameters of the temperature 

model. During each optimization iteration, the off-policy agent determines the parameters from a 

single driving cycle. Both Twin Delayed Twin Delayed Deep Deterministic Policy Gradient (TD3) and 

Twin Delayed Deep Deterministic Policy Gradients (DDPG) are utilised for optimising various driving 

cycles. These agents boast intricate neural network layers, enabling them to produce more experiences 

without directly interacting with the environment, leading to optimal parameter identification. They 

successfully optimised data from 6 driving cycles where the recorded stator and rotor temperatures 

closely matched the estimated temperatures by TD3 and DDPG, assisting in parameter determination. 

The prediction error or loss measured is minimal. Two generalised models have been created using 

these reinforcement learning agents, facilitating the discovery of optimal parameters under varying 

environmental conditions and accounting for model uncertainties. The outcomes of driving cycles 

using the temperature model and reinforcement learning agents are presented in Figure 4.7(a) & (b . 
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Figure 4.7 (a) Fitting the temperature measurements Drive-Cycle1 
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Figure 4.7 (b) Fitting the temperature measurements Drive-Cycle2 

4.3.3. Evaluation of results considering requirements coverage 

BT_R02 requirement “ML aided control model parameterization during propulsion system testing” is 

about the parameterization of the machine thermal model in the propulsion control system drive. The 

requirement contributes to the MDE and AI/ML AIDOaRT dimensions. It is aimed that the offline 

parameter estimation with aid of ML/AI based techniques would speed up and improve the time 

required in systems testing and in particular reduce the necessary manual effort by propulsion control 

experts in the test phase. In this context, reinforcement learning (RL) machine learning techniques 

(solution from MDU) and Active DOE with CAMEO tools (from AVL) are worked on to cover this 

requirement. The RL-based methods are promising data-driven techniques explored in the field of 

control of electric motor drives. RL methods enable learning in a trial-and-error manner and avoid 

supervision of each data sample. The algorithm requires a reward function to receive the reward 

signals throughout the learning process. Thus, the control policy could be improved on a continuous 

basis based on the measurement feedback. The RL type approach has been implemented and 

automated in AVL CAMEO Active DoE. This approach helps to reduce the number of necessary tests, 

e.g. compared to standard full-factorial test designs, by determining the necessary tests online, using 
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the machine learning models. It is planned that this online-modelling approach can be used in order 

to reduce the number of measurements required for parameter identification procedure of the 

temperature models. 

4.3.4. Evaluation of results considering requirements coverage 

BT_UCS_2_KPI_3.1_1  

Table 4.5 Case study KPI “BT_UCS_2_KPI_3.1_1 

This KPI is planned to be assessed based on the number of steps followed on the real time test set up 

to validate the design concepts. In order to assess the performance, ALSTOM plans to use AI/ML 

estimated parameters as inputs to the controller to minimise the deviation against reduced order 

estimation methods. We hope to conduct these measurements included in the upcoming deliverables 

D5.8 and D5.9.  

BT_UCS_2_KPI_4.1_1  

Table 4.6 Case study KPI “BT_UCS_2_KPI_4.1_1 ” 

KPI Identifier: BT_UCS_2_KPI_3.1_1 Scenario Identifier: BT_UCS_2 

KPI 
Description: Share of automated process steps for control parameter tuning 

Refined 

AIDOaRt KPI: 

Description: Increase in the percentage of the automated parts of the processes  
which are currently manual (e.g., predictive maintenance, generation  
of test cases). 

Identifier: KPI_3.1  Target  ≥ 30% 

KPI Measure: Steps involved in temperature rise test in the test rig  

KPI Baseline: Source 
Experience from power lab engineers 

Value: k0 = Nos. of steps followed in the present scenario 

Target: Decrease: 100·Δ/k0 = 100·(k0 – k)/k0  ≥ 30% 
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This KPI is planned to be assessed based on the number of steps followed on the real time test set up 

to validate the design concepts. In order to assess the performance, ALSTOM plans to use the solution 

as inputs to the controller to reduce the number of steps for design validation and thus hours spent in 

the test bench. These measurements shall be updated in the upcoming deliverables D5.8 and D5.9.  

BT_UCS_2_KPI_4.2_1  

Table 4.7 Case study KPI “BT_UCS_2_KPI_4.2_1” 

KPI Identifier: BT_UCS_2_KPI_4.1_1 Scenario Identifier: BT_UCS_2 

KPI 
Description: 

Relative reduction of time consumed for parameter tuning 

Refined 

AIDOaRt KPI: 

Description: Increase in the percentage of parts of the DevOps process covered in 
the Use Cases with productivity improvement. 

Identifier: KPI_3.1  Target  ≥ 30% 

KPI Measure: k = Hours used for temperature rise test in each driving cycle  

KPI Baseline: Source 
Actual recorded run time in the power lab 

Value: k0 = Hours for each point temperature rise test*no. of points*no. of 
iterations + manual parameter tuning time* number of iterations* no. 
of points+ drive cycle test run 

Target: Decrease: 100·Δ/k0 = 100·(k0 – k)/k0  ≥ 30% 

KPI Identifier: BT_UCS_2_KPI_4.2_1 Scenario Identifier: BT_UCS_2 

KPI 
Description: 

Model response deviation reduction with AI tuned parameters vs initial parameter 
set, i.e. improved accuracy in tuning parameter prediction with help of ML based 
algorithms. 

Refined 

AIDOaRt KPI: 

Description: Reduction of deviations from the specifications to improve 
predictability, conformance to specifications and proposal of system 
design refinements. 

Identifier: KPI_4.2  Target  ≥ 30% 

KPI Measure: k = Percentage deviation from the actual 

KPI Baseline: Source 
Simulation hours for the implemented algorithm, physical test run 
time 

Value: k0 = Deviation from the actual test run value from with ML algorithmbased 
estimation Vs educated guess of tuning parameters 

Target: Decrease: 100·Δ/k0 = 100·(k0 – k)/k0  ≥ 30% 
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This KPI is planned to be assessed based on the assessment of accuracy of ML/AI prediction against the 

real time test setup. These measurements shall be included in the upcoming deliverables D5.8 and 

D5.9.  

4.4. Planned improvements 

4.4.1. BT_UCS_1 

The initial labelled datasets have been relatively small. The plan is to develop higher fidelity prototypes 

within the next few months and perform validation in the production environment using full-scale 

datasets, with validation performed by requirement engineers. 

4.4.2. BT_UCS_2 

The future planned improvements is to complete the development of the proposed lumped-parameter 

thermal model, which includes support of multiple nodes in the model, support of model inputs and 

efficient parameter training on cycle data. Testing the thermal model structure will be performed using 

the measurement data. There is also intention to validate the models based on reinforcement learning 

using more precise and realistic data compared to the previously used tool-generated data. This 

initiative will necessitate close coordination among the partners and evaluation of the defined KPIs. It 

is also essential to incorporate more intricate neural network layers into off-policy agents to offer 

optimal parameters grounded in diverse driving cycle data. Furthermore, adaptation of the AVL 

CAMEO Active DoE procedure specifically for the dynamic thermal model is planned for testing of the 

DoE procedure and evaluation of the KPIs.  

4.5. Planned demonstration  

4.5.1. BT_UCS_1 

Demonstration will consist of the prototype tools deployed and evaluated in the Alstom production 

environment. 

4.5.2. BT_UCS_2 

A simulation-based temperature model will be developed that will be capable of handling data from 

various driving cycles. To enhance power control optimization, different agents of reinforcement 

learning-based optimization algorithms will be employed to work towards achieving the most optimal 

parameters for the controller, thus improving overall system performance. 

 



   

 

  Page 81 

 

AIDOaRt Project nr. 101007350   

5. CAM_CS04 case study “AI for Traffic Monitoring 
Systems” 

5.1. Case Study description 

Traffic monitoring system is usually a complex solution consisting of various sensors and 
components. CAMEA traffic monitoring use case includes systems that are mostly video-based or 
alternatively radar-based, and they can serve for applications as travel time estimation or vehicle 
detection and classification. Within the use case, we are investigating the possibility of enhancing 
current Traffic monitoring systems (within the Transport and Smart Mobility domain) using AI. Within 
the UC, we are mainly targeting low-power requirements using some of the following proposed 
techniques: suitable (embedded) platform, pre-processing of data, balancing between load and 
power consumption, and AI guided configuration and setup. Such systems can be then deployed to 
the field with possibility of autonomous operation with e.g. battery supply or solar power. 
 
Previously, there was no AI employed within the use case. Using conventional methods for 
camera/radar data processing and classification, the system does not often meet defined accuracy 
requirements or with certain limitations and the system is not as reliable and of quality as 
demanded. There is often demand for low-power operation where the pre-processing of data and its 
balancing between load and power consumption is necessary. This is also done manually thanks to 
some expert knowledge. The process is very demanding and can differ for individual installations of 
the system. However, there could be many combinations missed that can lead to much better 
results. 
 
CAMEA uses a so-called radar-on-chip platform that is a highly integrated solution with a radar signal 
part and processing cores embedded in silicon. The radar sensor needs to be configured during start-
up which is specific for each application and often also location. Modern smart radars are very 
compact devices that can be mounted practically everywhere and operated, e.g. using battery or 
solar power. For this, power consumption of the device needs to be kept very low. Additionally, the 
radars are installed outdoors in many cases and need to resist various weather conditions. For this, 
radar is enclosed in a sealed box and thus it lacks any possibility for active cooling. Thus, heat 
dissipation of the platform must be considered as well. 
 
The configuration of the radar sensor is very complex and some of its parameters have an influence 
on power consumption and heat dissipation of the radar chip. There are also some constraints on the 
configuration parameters that need to be fulfilled and some requirements pertaining to the 
environment sensing properties (e.g. maximum range, range resolution, angular resolution, and 
velocity resolution) that need to be met. With expertise, engineers can manually tune a radar 
configuration in a standard logic way to reduce e.g. the duty cycle of transmission. 
 
The AI-based STGEM solution by ABO will be used for power-aware radar configuration and can 
possibly generate much more interesting combinations of configuration parameters that minimise 
power consumption while providing the same level of performance. STGEM will be connected to the 
CAMEA interface that accepts the radar configuration. Information about power consumption and 
core temperature will be collected periodically and subsequently analysed. 
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The Case Study Synopsis is in Table 5.1. 

Table 5.1 Synopsis of the case study CAMEA 

Use case scenario CAMEA_UCS3 — Enable Low-power Device Configuration 

 Description: As the configuration of radar sensor (and possibly also other sensors), there 
could be some combinations hidden for manual adjustment. Automatically 
generated/tuned configuration could thus bring lower power consumption and 
heat dissipation (critical for autonomous outdoor operation) keeping or 
improving defined sensor qualities. Specialized AI-based method can be used 
for this purpose. 

Requirements: CAM_R02 

 Tools: STGEM (ABO) 

 KPI: CAMEA_UCS3_KPI_3.1 

5.2. Use case scenario CAMEA_UCS3 — Enable Low-power Device 
Configuration 

The focus of this CAMEA scenario is low-power sensor configuration with possible processing 
improvement and auto-calibration enabling. Selecting individual configuration parameters with 
influence on power consumption can be quite challenging. As well, defining constraints for such 
parameters needs to be carefully done. We are aiming to measure both power consumption of the 
so-called RCA21 module and junction temperature of the radar chip (which is part of the RCA module 
itself). Power consumption and temperature with stock configuration will be measured and then we 
start with iterations of AI-tuned configurations. Reasonable reduction of 20% in power consumption 
and 5 degrees Celsius in temperature is expected to be measured. 
 
Considering low-power operation, AI can play a role there as well - e.g. using suitable (embedded) 
platform, pre-processing of data, balancing between load and power consumption, and AI guided 
configuration and setup. When fulfilled (among others) by configuring a sensor device, tuning the 
configuration while keeping other qualities can be easily done. AI-based methods and defining some 
constraints for selected parameters and searching through generated configuration space can find 
the most suitable configuration for a given application keeping the lowest power consumption 
possible. 
 
Main part of the planned testbed is the radar sensor itself. The radar sensor will be installed in both – 
lab and real conditions on a multi lane road with high and stable traffic density. This is connected to 
the PC (via Ethernet) that will be controlling the sensor. As has been said, the radar chip has its own 
capabilities for junction temperature measurement. As there are no power metres, the TI INA226 
chip needs to be added into the box and it will be periodically read by the radar chip. At the 
beginning of each iteration, the sensor is restarted. Then, the selected configuration is sent to the 
sensor, and it starts with measuring. The measured values – current temperature, average and peak 
power consumption – will be sent to the PC with a defined period. Values will be collected and 

 
21 The name RCA is coming from internal convention for naming devices in CAMEA. 
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evaluated for each iteration. Individual tuned configurations are generated using AI-based STGEM 
tools from project partner ABO. 
 

5.2.1. Summary of preliminary results 

Using our experimental radar sensor, we are measuring two values: 

● Radar chip temperature (junction temp) – directly accessible via radar SDK so it can periodically 

read it and send it out. 

● Radar module power consumption – cannot be measured with internal HW means. We will 

include a simple but accurate I2C power metre that will be directly read by the radar chip. 

In case of temperature, stabilisation of the value should be considered. It is necessary to wait a minute 

or two to warm up a bit or cool down a bit. This is very necessary especially in case of the first start-up 

of the sensor. In case of outdoor operation, environment temperature should be also measured and 

used for compensation. In case of the power consumption, there is no need for stabilisation, and it can 

be measured immediately after configuration. However, this quantity will differ with load, radar should 

be fed with artificial/recorded data. Although we see it as a necessary step, this could be more 

problematic. Data needs to be corresponding with configuration, which could be problematic in case 

of various configurations and pre-recorded data. Also feeding a real radar device with such data is not 

very easy. Thus, after some testing of the approach on the table, we should move the radar outside. 

We will also use CAMEA infrastructure and make radar accessible via the internet. There we can get 

some real vehicle passes so the radar processing chain could be more loaded and realistic (and thus 

higher temperature and power consumption can be observed). As load can be dependent on many 

things – one of them is traffic density - we can get some additional information from the radar. This 

could be average load and traffic statistics or individual detections, so we compensate our 

observations based on that. 

The data collected from the radar are stored in a given format and then analysed/evaluated with an 

initial metric that still needs to be adjusted to cover more aspects. Then, an iterative process is being 

executed to evaluate as many configurations as possible. Also, some guidance for configuration 

adjustment has already been defined and tested. A test generation algorithm called OGAN (in ABO’s 

STGEM tool) was used to generate parameters that try to fulfil the use-case providers requirements of 

lowering the radar modules average power consumption, beyond that of what random search is 

capable of doing. Preliminary findings, as illustrated in Figure 5.1, indicate that OGAN exhibits the 

potential to optimise the radar system over time. However, it is important to note that the degree of 

optimization achieved does not entirely meet the desired objectives. This suboptimal performance 

may be attributed to two plausible factors: first, the radar system might have remained in a dormant 

or idle state during the testing phase, potentially impacting the optimization process. Second, it is 

conceivable that the search space encompassing the multitude of parameters subjected to 

optimization is excessively extensive, posing challenges in effectively navigating this vast parameter 

landscape. 
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To address these limitations and enhance the efficacy of future investigations, several avenues for 

further research emerge. One possible avenue involves the introduction of deterministic disturbances 

into the radar system during testing, thereby introducing more realistic operational conditions. 

Additionally, reducing the search space by focusing on a subset of parameters deemed most pertinent 

and meaningful for the optimization objectives could potentially yield more promising results. 

 

 
Figure 5.1 Visualisation of preliminary results with ABO’s STGEM tool AIDOaRt workflow 

5.2.2. Evaluation of results considering requirements coverage 

As the requirement CAM_R02 [1] needs AI-based methods used for optimization of radar-based 

system configuration, this requirement is then covered by the selection of STGEM (OGAN-based) 

method that is, within the UC, used for the configuration of individual radar sensors. This AI-based 

method is helping us to tune parameters of device configuration and thus meet requirements such as 

low power consumption and low heat dissipation. 

Therefore, definition of any metric to measure requirement coverage is not applicable here. 

5.2.3. Evaluation of results considering KPIs  

The next iteration of KPI evaluation within the CAMEA case study is specified below in Table 5.5.  

Table 5.2 Case study KPI “CAMEA_UCS3_KPI_3.1” 

KPI Identifier: CAMEA_UCS3_KPI_3.1 Scenario Identifier: CAMEA_UCS3 

KPI 
Description: 

Automating radar configuration generation and best candidate selection which is 
currently manual. 

Refined 

AIDOaRt KPI: 

Description: Increase in the percentage of the automated parts of the processes 
which are currently manual (e.g. predictive maintenance, 
generation of test cases). 

Identifier: KPI_3.1 Target  ≥ 20% 
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KPI Identifier: CAMEA_UCS3_KPI_3.1 Scenario Identifier: CAMEA_UCS3 

KPI Measure: k = Ratio of parameters automatically adjusted to total parameters of the 
configuration. 

KPI Baseline: Source: CAMEA radar sensor API – No parameters adjusted at the 
beginning. 

Value: k0 = 0 

Target: Increase: k  ≥ 10% (†) 

D5.6 Measure: Value: k6 = 2 k = 2% (‡) 

D5.7 Measure: Value: k7 = 5 k = 5% (⸸) 

(†) The case study target is lower than the AIDOaRt target as there are hundreds of parameters and 

we don’t expect to change so many.  

(‡) We have just tested a few parameters as a proof of concept. More parameters will be added.  

(⸸) More parameters within single configuration command has been tested and evaluated. More 

commands will be added as well. 

5.3. Planned improvements 

Planned improvements in the upcoming period: the configuration generation approach will be further 

tested. As some commands within the radar configuration have already been tested individually, we 

should extend the parameter space search approach to multiple parameters within multiple 

commands. As well, collected data from the radar should be extended and measurement periods 

adjusted to better reflect fast changes that happened during a very short radar transmission period. 

As power consumption also differs with load, radar should be fed with artificial/recorded data. 

Although we see it as a necessary step, this could be more problematic. Data needs to be 

corresponding with configuration, which could be problematic in case of various configurations and 

pre-recorded data. Also feeding real radar devices with such data is not very easy. Thus, after some 

testing of the approach on the table, we should move the radar outside. We will also use CAMEA 

infrastructure and make radar accessible via the internet. There we can get some real vehicle passes 

so the radar processing chain could be more loaded and realistic (and thus higher temperature and 

power consumption can be observed). As load can be dependent on many things – one of them is 

traffic density - we can get some additional information from the radar. This could be average load and 

traffic statistics or individual detections, so we compensate our observations based on that. 

5.4. Planned demonstration  

The results can be demonstrated, as it is based on physical radar sensor, in form of live demo or video. 

The whole process or its individual parts can be then demonstrated (and possibly visualised) the 

following way: Radar sensor can be installed in real conditions on multi lane road with high and stable 

traffic density. This will be connected to the PC (via Ethernet) that will be controlling the sensor. As has 



   

 

  Page 86 

 

AIDOaRt Project nr. 101007350   

been said, radar chip has its own capabilities for junction temperature measurement. There is power 

meter chip added into the box and it is periodically read by the radar chip. At the beginning of each 

iteration, the sensor is restarted. Then, selected configuration is sent to the sensor and it starts with 

measuring. The measured values – current temperature, average and peak power consumption – will 

be sent to the PC with a defined period. Values will be collected and evaluated for each iteration. 

Individual tuned configurations are generated by using STGEM tool from ABO. 
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6. CSY_CS05 case study “Machine learning in 
interactive proving” 

6.1. Case Study description 

The case study is about using Artificial Intelligence to ease the process of proving Proof Obligations 

(PO) in the context of safety development of Railway Systems. 

Developed by ClearSy, Atelier B is an industrial tool that allows for the operational use of the B Method 

to develop defect-free proven software using formal methods. Developing in B requires to write a 

formal specification, a machine-language implementation and to prove that the latter refines the 

former. Non-trivial projects generate thousands of proofs, of which a rough half can be automatically 

proved, and the rest needs to be manually demonstrated using a tool called the Interactive prover. 

Proving with the interactive prover requires mathematical skills, experience, and a lot of time. 

Moreover, modifying the system during its lifetime, even with a simple name change, often leads to 

“breaking all the proof”, as demonstrations need to be, slightly or deeply, modified to adapt to the 

change of hypothesis. 

Therefore, we believe that Artificial Intelligence can help engineers in some aspects of the B 

development, by assisting or replacing those interactive proving or adapting proof to change of 

hypothesis.  

Our industrial interests in the demonstrator that the case study develops are to reduce the time 

required to prove the correctness of development of proven software.  

Our interests in data engineering are to tell if AI can adapt to our specific needs and can provide a 

framework in the domain of proving. To our knowledge, no previous work has been done in this specific 

area. 

The Case Study Synopsis is in Table 6.1. 

Table 6.1 Synopsis of the case study CSY 

Use case scenario CSY_UCS1 — PO Classification 

 Description: This UCS aims to classify proof obligations to choose early what automatic tool 
can be used to solve them. This is a fully automatized dev-ops process in which 
projects containing proof obligations will be analysed, classified and then 
solved while stored on a git repository.  

Development involves three steps:  

• Manually classify a large sample of Proof Obligations 
• Building a vector structure from PO XML representations 
• Train a machine learning algorithm to classify 

• Use this machine to classify next Proof Obligations.  

KPI: CSY_UCS_1_KPI_1.1_1  
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Use case scenario CSY_UCS2 — Solve a PO with a variant of existing proofs 

 Description: UCS2 is about the part after the automatic proving, when the developer is 
supposed to manually solve the PO. When a model has already been worked 
on, there are manual demonstrations that are stored and that can be retried. 
If the PO is unchanged, the old demonstration can be reused. If it has slightly 
changed, it must be redone. Sometimes it is just one command that must be 
added or removed. This has to be done manually and takes time. This UCS tries 
to automatically write those new PO demonstrations. 

KPI: CSY_USC_2_KPI_3.1_1 

Use case scenario CSY_UCS3 — Solve a branch of a PO using Reinforcement Learning 

 Description: Demonstrations are made by a developer, depending on the complexity of the 
PO, it takes between 3 and 30 minutes to solve a PO, with a 16 per hour mean. 
Sometimes, patterns can be found between PO and demonstrations, for 
example there are packs of PO that require variation of the same 
demonstration. UCS3 works on manual proving, by trying to recognize those 
patterns and solve parts of demonstration. We imagine it to be in the form of 
a button that the user presses to solve the rest of the demonstration. 

KPI: CSY_USC_3_KPI_3.1_1 

Use case scenario CSY_UCS4 — Suggest a command in interractive proving 

 Description: Demonstrations are made by a developer and depending on the complexity of 
the PO, it takes between 3 and 30 minutes to solve a PO, with a 16 per hour 
mean. Sometimes, patterns can be found between PO and demonstrations, for 
example there are packs of PO that require variation of the same 
demonstration. UCS4 works on the manual proving, by trying to recognize 
those patterns at each step of the demonstration. We imagine it to be running 
permanently as a subtask and suggesting commands and parameters to the 
user while he or she solves the demonstration. 

KPI: CSY_USC_4_KPI_4.1_1 

Use case scenario CSY_UCS5 — Automatic refinement of specification 

 Description: UCS5 is about generic B development. In B development, you have to write at 
least two models, one that is a formal specification close to the paper 
specification and one that is an implementation, ready to generate machine 
code. A large part of the PO comes from the obligation for the implementation 
to refine the specification.  

UCS5 is about having a tool that can write a refinement from a specification. 

KPI: CSY_USC_5_KPI_2.1_1 



   

 

  Page 89 

 

AIDOaRt Project nr. 101007350   

Use case scenario CSY_UCS6 — Automatic specification (abstraction) of machine code 

 Description: UCS6 is about generic B development. In B development, you have to write at 
least two models, one that is a formal specification close to the paper 
specification and one that is an implementation, ready to generate machine 
code. A large part of the PO comes from the obligation for the implementation 
to refine the specification.  

UCS6 is about having a tool that can write a formal specification from a 
concrete implementation. 

KPI: CSY_USC_6_KPI_2.1_1 

6.2. Use case scenario CSY_UCS1 — PO Classification 

This UCS aims to classify proof obligations to choose early what automatic tool can be used to solve 

them. This is a fully automated dev-ops process in which projects containing proof obligations will be 

analysed, classified and then solved while stored on a git repository.  

6.2.1. Summary of preliminary results 

 
Previously, a plan had been developed, involving four steps: 

● Manually classify a large sample of Proof Obligations.  

● Building a vector structure for each proof obligation from the .poxml files (xml files containing 

all PO of a component) 

● Train a Machine Learning algorithm to classify.  

● Use this Machine to classify next Proof Obligations.  

Manual classification has been realised using a scripted tool called Solyzer (figure 6.1), developed by 

Clearsy for AIDOaRT, that reuses data from past projects while it also measures the time of execution 

for coming benchmarking.  

 

Figure 6.1 Solyzer splash logo 

We also worked on data representation with the design and specification of the .poxml file. 

In the last period, we worked on selecting the good technology to fulfil the next needs. 

Cloud-based treatment 

We first tried using cloud-based AI IDE like Google Colab for their models content and simplicity of use. 

In this case it was mandatory to use only anonymized data for confidentiality reasons.  
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We used a recurrent neural network, configured to classify the proof obligation Goals between 

unproved or proved states (and with different forces of automatic treatment).  

The network was configured with 5 layers: 

● embedding layer as entry layer, 

● Long short-term memory with 64 cells, 

● Dropout with frequency 0.3, 

● Dense layer with 64 parameters and ReLu activation, 

● Dense layer with one param to get the classification. 

Using anonymized data, our results were not very good, mostly because it prevented us to use the 

Hypothesis part of the PO (results in Table 6.2):  

Table 6.2 Results of first SolverPredict experiment 

Model accuracy 0.8151 

BCE Loss 0.4576 

We realised that working with anonymized data was more of a burden that we foretold, so once that 

first results came we decided to transfer models and data locally.  

Local treatment 

We assembled a computer with enough memory and GPU to deal with RNN (Recurrent Neural 

Network) and started to reproduce the experiment with richer data, including hypotheses and more 

classification states. 

The network was configured with 6 layers: 

● embedding layer as entry layer, 

● LTSM with 128 cells, 

● Dropout with frequency 0.2, 

● LTSM with 128 cells, 

● Dropout with frequency 0.2, 

● Dense layer with three units. 

The model has been trained on 7 of our 30 projects, mostly to fit the capacity of our computer. The 

training was done during 6 epochs. Epochs are complete runs that train the model with the same full 

set of data but in different organisation and order. During the training we noticed a great convergence 

of the model, with a drop of the loss and increase of accuracy as it is shown in Figure 6.2 to 6.4. 
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Figure 6.2 Results of second SolverPredict experiment 

 

Figure 6.3 Evolution of accuracy through epochs of the second SolverPredict experiment 

 

Figure 6.4 Evolution of entropy loss through epochs of the second SolverPredict experiment 

 

 

Results on the test data showed that the model was able to correctly predict between 82% and 91% 

of each class as shown in the confusion matrix of Figure 6.5.  



   

 

  Page 92 

 

AIDOaRt Project nr. 101007350   

A confusion matrix is a table that gives the results of a classification over a test sample. Here the test 

sample is a part of the Training data that was put aside at the beginning of the training for this purpose. 

 

Figure 6.5 Confusion matrix of the second SolverPredict experiment 

 

6.2.2. Evaluation of results considering KPIs 

On the benchmark project paso, results were a little bit weaker than what we obtained on test data 

but still satisfying. The difference can be explained by the speciality of data on the project used for 

training and the one used for benchmarking. A larger training will be studied, there is still data that can 

be integrated, It could make the model more generic at the cost of a longer training.  
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Figure 6.6 Confusion matrix of the second SolverPredict experiment 

 

In the end, as shown in Figure 6.6, we obtained a satisfying result of 84% of proof obligations that were 

successfully proved in 30 minutes (10 for classification and 20 for proving) instead of 370 minutes for 

the initial benchmark. The gain of 90% is impressive, it shows that using AI classification for automatic 

proving is working. Nevertheless, 16% of proof obligations that were initially solved have been 

classified as unproved, this result mitigates the gain as it would need a time as long as the gain to 

identify them manually and solve them. This could be improved if we changed the weight and 

threshold of the model to make it prefer the most inclusive choices. For example, if a PO is FR, it can 

be classified as F0 or F1 and still be solved, a F0 can be classified as F1 and an unproved can be classified 

in any class. This kind of error would increase the time spent on proving but also the rate of proved 

PO. On the other hand, classifying every proof in the most permissive class would lead to the initial 

problem with a proving time of 370 minutes. 

A last improvement of the tool could be in including other classes, ANR Project BLASST 

(https://merz.gitlabpages.inria.fr/blasst/) in which CLEARSY participates aims to use SMT and SAT 

provers with B proof obligations. For this, classifying on PO that can be solved with external solvers 

could be a help, but we need to get or build specific data since data from APERO or Prep does not 

contain SAT or SMT proved PO. 

https://merz.gitlabpages.inria.fr/blasst/
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CSY_UCS_1_KPI_1.1_1 

Table 6.3 Case study KPI “CSY_USC_1_KPI_1.1_1” 

KPI Identifier: CSY_USC_1_KPI_1.1_1 Scenario Identifier: CSY_USC_1 

KPI 
Description: 

Reduction of the proving time due to classification of the PO and reduction of 
unnecessary prover attempts. 

Refined 

AIDOaRt KPI: 

Description: Improvement of the time required for identification of design 
problems thanks to the analysis of the collected data. 

Identifier: KPI_1.1 Target  ≥ 50% 

KPI Measure: k = Time in minutes for the total process of automatic solving  

KPI Baseline: Source: Time when each tool is tried on every unproven PO, from the 
fastest to the slowest (baseline process) on project 15 “paso”  

Value: k0 = 370 

Value : k =  30 

Target: Decrease: 100·Δ/k0 = 100·(k0 – k)/k0  ≥ 90%  

 

 

6.3. Planned improvements 

For the next cycle, we will address the problem of automatic proving. With the actual results, we 

confirmed that deep learning models are able to treat Proof Obligation material, we now need to find 

a way to train the model to propose commands of proof. 

6.4. Planned demonstration  

At this time, we are able to demonstrate the PoC of PO classification. 

Using Solyzer and SoverPredict, we can demonstrate how data are processed, classified and actually 

proved. Choosing a short model or a part of a model, it could be done in a reasonable time for a live 

demonstration. 
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7. HIB_CS06 case study “AI DevOps in the 
restaurants business” 

7.1. Case Study description 

The purpose of the Case Study 06 by HI Iberia is to streamline the production of hardware/software 
solutions for small and medium business operations taking as a baseline the product TAMUS, offered 
by HI Iberia to restaurants and restaurant chains in Spain, with over 100 locations being exploited as 
of the writing of this report. 

Managing the codebase, variants and day-to-day operations of the installed products is challenging for 
an SME, so the use case in AIDOaRt looks for solutions to automate processes using AI and meet some 
of the Cyber Physical Systems risks posed by the system such as the data security problems in using 
mobile devices as order-taking systems and the usage of moving parts such as cash registers. 

We divided the challenges posed by the Case Study in four general requirements that cover a multitude 
of details in the use case. These requirements can be fully consulted in D1.3 [2] but in summary they 
are: 

●    HIB_R01: Regarding the need to analyse using AI the produced logs generated by the system 
in order to detect anomalies in the operation of the system at runtime and anticipate points 
of failure. 

●    HIB_R02: Covering the usage of AI to manage the system requirements, maintained in a hands-
on fashion by the TAMUS team and requiring substantial manual work to be analysed. The 
objective of this requirement is to enable requirement classification and assignment to 
developers by means of AI analysis. 

●    HIB_R03: Focusing on the packaging on new versions of the TAMUS system as ‘software 
bundles’ that can be then customised and sent to their intended restaurants of usage. AI is 
here used to validate each bundle before delivery. 

●    HIB_R04: Closing the DevOps circle by analysing the deployment process. AI is used to get a 
better understanding of the results of deployment and integration in the physical location of 
the restaurant. This relates to several CPS aspects such as the particulars of the restaurant’s 
layout, networking and connected hardware elements such as cash registers and locks. 

 

Table 7.1 Synopsis of the case study 06 Restaurants 
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Use case scenario HIB_UCS1 — Automated log analysis 

 Description: Analysis of the logs of the system using an automated tool that provides 
insight in key metrics, detects anomalies and produces issues that can be 
actioned upon by the development team. 

In this UCS we develop the means to (a) pre-process the logs generated by all 
actors in the restaurant system, (b) analyse them using text analysis AI tools 
and Natural Language Processing (NLP) systems to analyse user inputs in 
natural language and (c) generate reports for the systems analyst to take 
decisions on the deployment. 

Requirement HIB_R01 

Tools HIB_logAnalyzer (HIBLA) 

KPI: HIB_UCS_1_KPI_1.2_1 

Use case scenario HIB_UCS2 — AI requirements management 

 Description: In this UCS we manage the requirements stored using a Trello22 board for the 
TAMUS system. This is done to get (a) automatic classification of the new 
requirements according to the categories used by the development team and 
(b) suggested developers from the team according to their past performance 
with a specific time of implementation of requirements. 

Requirement HIB_R02 

Tools HIB Requirements Analyzer (HIBRA) 

KPI: ● HIB_UCS_2_KPI_1.1_2 
•    HIB_UCS_2_KPI_1.1_3 
•    HIB_UCS_2_KPI_3.1_1 

 
22 https://trello.com/ - Trello website 

https://trello.com/
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Use case scenario HIB_UCS3 — AI-enabled new versions of assets analysis 

 Description: Demonstrations are made by a developer, depending on the complexity of the 
PO, it takes between 3 and 30 minutes to solve a PO, with a 16 per hour mean. 
Sometimes, patterns can be found between PO and demonstrations, for 
example there are packs of PO that require variation of the same 
demonstration. UCS3 works on manual proving, by trying to recognize those 
patterns and solve parts of demonstration. We imagine it to be in the form of 
a button that the user presses to solve the rest of the demonstration. 

Requirement In this UCS we perform AI-enabled analysis of the newly developed components 
for TAMUS as new software bundles to install in the system for a given 
restaurant. 

Tools HIB_R03 

KPI: Custom CI/CD tools (TBD) 

Use case scenario HIB_UCS4 — Deployment and analysis of new HW/SW versions 

 Description: In this UCS we perform and analyse the results of automatic updates to the 
code for the POS system including AI for compatibility and issue tracking. 
Aspects related to CPS are strongly monitored (e.g. link with the physical layout 
of each one of the restaurants such as kitchen, tables, etc. as well as the 
integration with hardware elements such as cash registers and printers). 

Requirement HIB_R04 

Tools Custom CI/CD tools (TBD) and HIBLA for analysis of the deployment logs 

KPI: •    HIB_UCS_4_KPI_1.1_4 

•    HIB_UCS_4_KPI_3.1_2 
 
In the period leading up to the development of this D5.7, good progress has been made in the 
completion of requirements HIB_R01 and HIB_R02, with progress in HIB_R03 and HIB_R04 more 
limited due to issues during the originally intended collaboration with AND. In the work for the 
resolution of the first two requirements good progress has been made with regards to the AI 
approaches, with selection of algorithms, baseline training and evaluation of the results undertaken. 
All of this will be detailed in the following subsections. 

7.2. Use case scenario HIB_UCS1 — Automated log analysis 

In this UCS, we develop the means to (a) pre-process the logs generated by all actors in the restaurant 
system, (b) analyse them using text analysis AI tools and NLP systems to analyse user inputs in natural 
language and (c) generate reports for the systems analyst to take decisions on the deployment. 

Challenges 

The challenges in this UCS are: 
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● Acquisition of source data from log files of various assets in the system (from the main 
application but also from the OS for the gateway and cloud server, system logs from hardware 
devices such as smartphones used as order taking device, cash registers, etc.). 

● Homogenization of the different kinds of log files into a unified format (comprising, for 
example, application log traces, human generated comments, developer notes, etc.) 

● Process all of this data with a variety of AI tools including text processingtools, NLP toolchains, 
etc. 

● Organising the process of periodically performing the data acquisition, analysis and generation 
of reports. 

 

7.2.1. Summary of preliminary results 

In this Use Case scenario much progress has been done in establishing a proper Text Analytics engine 
that reads the aggregated logs from our test system at http://aidoart.tamus.io, as depicted in Figure 
7.1: 
 

 

http://aidoart.tamus.io/
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Figure 7.1 Deployed AIDOaRt version of TAMUS with a sample list of available products for purchase in the 

Menu (‘Carta’ in the Spanish original) connected with their sub-categories, price and routed printer for 

ordering (‘Impresora’) 

 
The deployed system simulates a number of restaurants under the AIDOaRt demonstrator umbrella. 
Some of these simulated restaurants have access to physical devices such as cash registers, doors in 
cupboards for ingredients (used for inventory tracking) and other elements. 
 
For the analysis of logs, however, we found the deployed prototype a bit restrictive since it is not 
representative of a working system in terms of log generation (the system mainly sits idle). We had 
thus two opportunities: to use a simulation to generate logs on the deployed system or to use system 
logs for a physical location where TAMUS is actually used. We chose the latter as using simulations to 
generate synthetic data that then is analysed using AI defeats the purpose of the scenario. 
 
For that, we chose to evaluate the results of AI analysis on the logs by the real TAMUS system. For the 
evaluation testbed, logs for 6 consecutive days in April 2023 were acquired. This is representative of 
the real system operation, as logs are collected in large batches and then analysed by humans 
manually. 
 

 

Figure 7.2 Excerpt from TAMUS logs from 08 April 2023 

 
The main objective of the AI analysis of the logs for now is to analyse the temporal behaviour of the 
devices connected to the TAMUS server. This is usually tracked using a simple keepAlive() RESTful call. 
Logs from these calls can be appreciated highlighted in the Figure 7.2. The system as of today is ‘dumb’, 
it only knows if the keepAlive() calls are made by the devices and received by the server. In case there 
is a disruption, it is a signal that the system is not connecting properly and an alert is raised for manual 
inspection. 
 
In the HIB_UCS1 we want the system to improve its operational intelligence by providing a more 
nuanced analysis of these keepAlive() calls. That way, not only major disruptions can be detected but 
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also signs of future ones (e.g., if short interruptions pile up, if interruptions are consistently being 
longer or more frequent). Thus, we have decided to use AI for complex event processing here. 
 
We use Python text tools to ingest the data and then the detection of failures is done using plain 
NumPy in addition to a layer of PySiddhi23 for grouping together the individual instances of issues. This 
is then fed to a plot generating submodule that builds plots to be interpreted by humans. As a result 
of this analysis, we have obtained the following plot shown in Figure 7.3 of connectivity for devices in 
mid April 2023 on the real TAMUS system. 
 

 

Figure 7.3 TPV (point of sale terminal) evolution of connectivity over April 2023 for the commercial TAMUS 

deployment. Explanation of the figure in the text body. 

 
In the Figure 7.3, disruptions of connectivity are marked by crosses in the timeline for each device. We 
can quickly see some interesting results, such as major disruption in device florcanela-549167334 (fifth 
from the bottom) with a sequence of minor faults on April 07, 08 and 09 which lead to a catastrophic 
failure on April 10th that lasts for hours. 
 
The catastrophic failure can be easily detected using traditional analysis, but the lead-up to it in the 
prior days is more interesting as it enables us to build an AI model that detects this build-up of minor 
issues automatically. 
 

 
23 PySiddhi Complex Event Processing: https://siddhi-io.github.io/PySiddhi/  

https://siddhi-io.github.io/PySiddhi/
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7.2.2. Evaluation of results considering requirements coverage 

The requirement upon which this UCS is built is quite generic: 

HIB_R01: Regarding the need to analyse, using AI, the produced logs generated by the system in 
order to detect anomalies in the operation of the system at runtime and anticipate points of 
failure. 

We can claim we cover the basics in this requirement as we can analyse the logs with ease now. The 

requirement can still be pursued however, as more automation can be extracted from it (the detection 

of build-ups, for example). This is a topic for the future of the work in AIDOaRt. 

7.2.3. Evaluation of results considering KPIs 

The relevant KPI for this UCS is as follows: 

Table 7.2 KPIs HIB_UCS1 

KPI Identifier: HIB_UCS_1_KPI_1.2_1 Scenario Identifier: HIB_UCS1 

KPI 
Description: 

Reducing time spent on issues detection based on logs. 

Refined 

AIDOaRt KPI: 

Description: Improvement of the early detection of system deviations 

Identifier: KPI_1.2 Target  ≥ 30% 

KPI Measure: k = hours per week spent on analysing the logfiles for a single restaurant 
installation.  

KPI Baseline: Source: Internal calculations by the development team. 

Value: k0 = 30 

Value : k =  10 

Target: Decrease: 100·Δ/k0 = 100·(k0 – k)/k0  ≥ 66% 

 

The detection of connectivity issues is the major aspect upon which the Operations team in HIB spends 

time manually checking logs. The usual time for this was around 30 minutes per day of logs generated 

by the system. With the current system as described, this has been reduced to around 10 minutes, 

thereby resulting in a reduction of around 66%. This can still be optimised by improving the detection 

of trends and buildup to failure as described above. 

7.3. Use case scenario HIB_UCS2 — AI Requirements Management 

In this UCS we manage the product requirements, stored using a Trello board for the TAMUS system. 

This is done to get (a) automatic classification of the new requirements according to the categories 

used by the development team and (b) suggested developers from the team according to their past 

performance with a specific time of implementation of requirements. 

Challenges 
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The following are the challenges for HIB_UCS2: 

● Connecting via the API to the relevant Trello boards and acquisition of the data contained in 

the boards into a usable format. 

● Use of NLP to cluster the different topics of the Trello cards into those relevant for the 

development workflow. 

● Use of Machine Learning to identify the most relevant developers to tackle a proposed task 

based on prior performance with similar tasks. 

● Generation of reports for the product owner. 

 

7.3.1. Summary of preliminary results 

In the past months in AIDOaRt we have successfully integrated AI analysis tools (using NLP toolchains) 
with the Trello requirements management process used by the TAMUS developers. We can see a 
snapshot of the board in Figure 7.4 and a detail of a single requirement in Figure 7.5. 
 

 

Figure 7.4 TAMUS Trello board with requirements in different stages of production (in the stacks such as 

‘Futurible’: Future features, ’Errores’: Errors and ‘Pendiente’: Pending. Each requirement is stored in a single 

card. 
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Figure 7.5 TAMUS Requirement in Trello (detail) with highlights on the assigned ‘tags’ or topics and the 

‘members’ or assigned developers. 

 
Footer: TAMUS requirement card with highlights on the possible ‘tags’ or topics and the ‘members’ 
or assigned developers. 
 
The requirements are encoded by the product manager in natural language (in Spanish but mixed with 
much jargon and technical terms). The overall goals of the AIDOaRt system for now would be two: 

● Detect the ‘topic’ and assign Trello ‘tags’ based on the relevant one(s). 
● Assign the requirement to the most likely developer, based on past performance of said 

developer. 
 
Since we are using a system based on manual inputs, we need to use AI tools that allow us to 
incorporate a certain aspect of ‘fuzziness’. For example, when reading the text of the requirement to 
detect the topic, any analysis using purely vanilla NLU tools is very likely to fail. We had then to do 
several layers of pre-processing to (a) remove unnecessary terms (language connectors, empty words), 
(b) analyse the topics based on word frequency including these jargon terms and mixed english-spanish 
words (e.g., ‘stock’ is not a Spanish word but can be seen in the text for the requirement depicted 
above) and (c) associate n-grams (vectors of consecutive words) with the assigned developers in the 
past because it is expected that their performance in the past can be of use in the future. In layman 
terms, and based on the requirement depicted above, it is expected that future requirements 
containing the terms ‘stock’, ‘inventario’ and ‘pedidos’ can be automatically pre-assigned to the tag 
‘TAMUS-CLOUD’ and to the developer ‘VV’. 
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For this we used a Natural Language Processing engine built on Python and following a zero-shot 
learning proposed by RISE in the railway use case24.  
 
Using the tools in the standard NLP Python community, we came up with the following phases of 
analysis: 
Phase 1 - Data cleaning: 
Some typical processes applied such as: removing unwanted characters, i.e., special characters, 
converting all text to lowercase, text tokenization, removing stop words, i.e. 'and', 'the', etc. and 
getting the root of words (lemmatization). 
 
Phase 2 - Data exploration: 
A variety of techniques are used to get a better understanding of the captured data before running the 
AI algorithms on them. These include: 

● Calculating basic statistics such as the number of documents, the average length of the 
documents and the most frequent words. 

● Investigating label distribution to understand class balance and identify potential class 
imbalance issues, which would affect the training of our algorithms. 

● Analysing the most common and unique words for each tag to identify distinctive patterns. 
● Calculating the TD-IDF – inverse document frequency. This is the frequency of occurrence of 

the term in the collection of documents. It is a numerical measure that expresses how relevant 
a word is to a document in a collection. 

● Trying graphical visualisations with the reduced dimensionality such t-SNE graphics with TD-
IDF vs embedding. 

These elements of analysis provide values for each of the words and tags in a high dimensionality 
mathematical model. With that in hand, the end objective is to understand how far away from each 
other are the data points representative of each tag. In our analysis we could see they are much 
overlapped, meaning that the tags are somehow representing overlapping concepts in the 
requirements analysis. 

● The polygons (defined by the calculated points in the multidimensional space) are the different 
classes that are obtained using k-means clustering both for the description and in the cell 
below, for the requirements name/title. The points are the different descriptions for the case 
of descriptions and the different names/titles and in which group they fall. As mentioned 
above, we observed that the polygons defining our ‘tags’ were very much overlapping. 

● In summary we observed that with traditional ML techniques it will be very difficult to assign 
the requirements to different tags, as there is no clear difference among them, due to the 
reduced number of data that we have that is translated in unbalanced datasets. 

● So, finally, we tried a Deep Learning approach with the Zero Shot learning process currently 
being used. The reason is that Language Models need a lot of requirements to be properly 
trained, but with the Zero Shot we are able to train deep language models with just few 
requirements.  

● The model to be implemented relies on a pre-trained ML backbone that is used to perform 
tokenization and create task sentence embedding and label task embedding. Then, the 
classifier processes the embedding results by computing the relatedness between the 

 
24 Bashir, Sarmad, et al. "Requirement or not, that is the question: A case from the railway industry." 

International Working Conference on Requirements Engineering: Foundation for Software Quality. 
Cham: Springer Nature Switzerland, 2023. 
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sequences embedding and the label embeddings using cosine similarity. Finally, the overall 
similarity scores will be fed into a classification function, and the probabilities of all labels will 
be computed to select the maximum score as the most related labels to a given task 

Following this process we arrived at a classifier that, given the text of the Trello card, can make a 
confident prediction of the topic discussed within. Using a similar process, we can make predictions 
upon who would be the most likely developer to be able to resolve it. 

7.3.2. Evaluation of results considering requirements coverage 

The original requirements for this UCS read as follows: 

    HIB_R02: Covering the usage of AI to manage the system requirements, maintained in a hands-
on fashion by the TAMUS team and requiring substantial manual work to be analysed. The 
objective of this requirement is to enable requirement classification and assignment to 
developers by means of AI analysis. 

We have achieved much of the AI development needed to fulfil this requirement. The remaining work 

required involves the automation of the process from a technical point of view (using the Trello API 

bidirectionally to get the newly produced requirements and then to assign tags and members to them). 

This is expected to be resolved in the coming months of AIDOaRt.  

7.3.3. Evaluation of results considering KPIs 

The relevant KPIs for this UCS were as follows: 

Table 7.3 KPIs HIB_UCS2 

KPI Identifier: HIB_UCS_2_KPI_1.1_2 Scenario Identifier: HIB_UCS2 

KPI 
Description: 

Decrease of time spent in the assigning of tags to cards as compared to a human 
operator. 

Refined 

AIDOaRt KPI: 

Description: Improvement of 25% of the time required for identification of 
design problems thanks to the analysis of the collected data. 

Identifier: KPI_1.1 Target  ≥ 25% 

KPI Measure: k = Time spent in total on requirements topic tagging by the product owner in 
minutes per week per installation of TAMUS. 

KPI Baseline: Source: Estimates of the current product owner. 

Value: k0 = 30 

Value : k =  20 

Target: Decrease: 100·Δ/k0 = 100·(k0 – k)/k0  ≥ 33% 

Table 7.4 KPIs HIB_UCS2 

KPI Identifier: HIB_UCS_2_KPI_1.1_3 Scenario Identifier: HIB_UCS2 

KPI 
Description: 

Decrease of time spent in the assigning of tags to cards as compared to a human 
operator. 

Refined 

AIDOaRt KPI: 

Description: Precision of the assigning of tags to developers as compared to a 
human operator. 

Identifier: KPI_1.1 Target  ≥ 25% 
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KPI Identifier: HIB_UCS_2_KPI_1.1_3 Scenario Identifier: HIB_UCS2 

KPI Measure: k = Time spent in total on requirements assigning by the product owner in minutes 
per week per installation of TAMUS. 

KPI Baseline: Source: TAMUS product owner experience. 

Value: k0 = 45 

Value : k =  45 

Target: Decrease: 100·Δ/k0 = 100·(k0 – k)/k0  ≥ 0% 

Table 7.5 KPIs HIB_UCS2 

KPI Identifier: HIB_UCS_2_KPI_3.1_1 Scenario Identifier: HIB_UCS2 

KPI 
Description: 

Coverage of the automatic system reading the Trello board in terms of cards fully 
processed (input into the system for analysis). 

Refined 

AIDOaRt KPI: 

Description: KPI 3.1: Automate a 30% of the processes which are currently 
manual (e.g., predictive maintenance, generation of test cases). 

Identifier: KPI_3.1 Target  ≥ 30% 

KPI Measure: k = Number of new tasks/cards issued per week. 

KPI Baseline: Source: Estimates of the TAMUS product owner. 

Value: k0 = 3 

Value : k =  3 

Target: Decrease: 100·Δ/k0 = 100·(k0 – k)/k0  ≥ 0% 

For HIB_UCS_2_KPI_1.1_2 - Decrease of time spent of the assigning of tags to cards as compared to 

human operator, our baseline value was 30 minutes per week. With the automatic system used 

(although it is not fully integrated with Trello, as mentioned) we have reduced this to around 20 

minutes, thus reducing the value up to 33%. This is very promising as it is expected that when the Trello 

automations are in place, the value will be even lower. 

For HIB_UCS_2_KPI_1.1_3 - Precision of the assigning of tags to developers as compared to human 

operator, our stated baseline was 45 minutes per week. In this case, the developer selection by the 

system is not overly reliable for now, so the time spent remains unchanged. We expect to improve 

recall (the ability of the system to provide an answer on a query for a given tag) in the next iteration 

by providing the training of the AI models with more data. 

Finally, for HIB_UCS_2_KPI_3.1_1 - Coverage of the automatic system reading the Trello board in 

terms of cards fully processed (input into the system for analysis), the value was 3 automated 

readings from Trello per week. Since this is still not functional, the progress in this KPI is 0%. 

7.4. Use case scenario HIB_UCS3 – AI-enabled new versions of assets 
analysis 

In this UCS, we perform AI-enabled analysis of the newly developed components for TAMUS as new 

software bundles to install in the system for a given restaurant. 

Challenges 
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The challenges in this UCS are as follow: 

● Implementation of a CI/CD workflow in the development system for TAMUS, which currently 

relies mostly on human developers making all of the integration and deployment work. 

● Make the system able to analyse the proposed new software versions of TAMUS proposed as 

‘bundles’ and model them in an intermediate format. 

● Detect anomalies in the proposed ‘bundles’ and generate reports accordingly for the product 

owner to take actions such as flagging the bundles for human inspection or rejecting the 

bundle. 

7.4.1. Summary of preliminary results 

This UCS was not fully tackled during this period due to one key collaboration with AND being delayed 
around M18 of the project. After that, no suitable alternative could be found within the consortium so 
we are planning to tackle it with a mixture of off-the-shelf DevOps tools and dedicated HIB 
developments. However, the current progress is limited. 

7.4.2. Evaluation of results considering requirements coverage 

For the reasons stated above, the requirement is still not covered. 

HIB_R03: Focusing on the packaging on new versions of the TAMUS system as ‘software bundles’ 
that can be then customised and sent to their intended restaurants of usage. AI is here used to 
validate each bundle before delivery. 

 

The requirement remains nonetheless relevant and some preparatory work has been undertaken to 

improve this implementation in the next period. 

7.4.3. Evaluation of results considering KPIs 

No achievement means that the treatment of new versions in TAMUS is still very much in its initial 

state. The KPIs remain unchanged and 0% progress is achieved, although this is expected to be solved 

shortly after the finishing of this deliverable. 

7.5. Use case scenario HIB_UCS4 – Deployment and analysis of new 
HW/SW versions 

In this use case scenario, we perform and analyse the results of automatic updates to the code for the 

POS system including AI for compatibility and issue tracking. Aspects related to CPS are strongly 

monitored (e.g. link with the physical layout of each one of the restaurants such as kitchen, tables, 

etc., as well as the integration with hardware elements such as cash registers and printers). 

Challenges 

The challenges in this UCS are as follow: 
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● Analysis of the deployment process of the assets analysed at HIB_UCS3 and integration into 

the log analysis toolchain proposed at HIB_UCS1. 

7.5.1. Summary of preliminary results 

Same as with the connected HIB_UCS3, we are missing key CI/CD software that we couldn’t find within 
the consortium. Thus, the major part of this work is delayed until the next period where we will 
integrate off the shelf tools with dedicated AI algorithms developed by HIB. We have focused during 
the period for this deliverable in cleaning up the definition of update software packages in TAMUS 
(known as ‘bundles’ and containing both compiled code and deployment instructions encoded as shell 
scripts) so that they can be ingested by the AI algorithms. 

7.5.2. Evaluation of results considering requirements coverage 

HIB_R04: Closing the DevOps circle by analysing the deployment process. AI is used to get a better 
understanding of the results of deployment and integration in the physical location of the 
restaurant. This relates to several CPS aspects such as the particulars of the restaurant’s layout, 
networking and connected hardware elements such as cash registers and locks. 
As per the prior requirement and UCS3, little progress has been achieved so the requirement 
still remains fully relevant and not covered. 

The requirement remains nonetheless relevant and some preparatory work has been undertaken to 

improve this implementation in the next period, such as generalising the ‘bundle’ model as proposed 

in the previous subsection and providing a serialization strategy so that the metadata of the bundle 

can be transferred to the AI nodes without including the binary assets. 

 

7.5.3. Evaluation of results considering KPIs 

No achievement means that the treatment of new versions in TAMUS is still very much in its initial 

state. The KPIs remain unchanged and 0% progress is achieved, although this is expected to be solved 

shortly after the finishing of this deliverable. 

7.6. Planned improvements 

The planned improvements for the next cycle are as follows per UCS: 

● In UCS1 we plan to improve the AI that predicts failure in connectivity as we have discussed in 

the relevant section. For this, we will use more time series analysis as available in the PySiddhi 

library that we have mentioned above. The overall goal is to be able to anticipate catastrophic 

connectivity issues that are preceded by minor deviations. This is expected to be fully 

operational in the next iteration of this work. 

● In UCS2 we need to solidify the developer assignment as currently results in bad predictions 

that do not save any time to the product manager since they have to be revised in many 

instances. In addition, we plan to improve the end-to-end Trello automation by enabling the 

AI system to read from Trello and output its results on the board. This can be achieved by using 

the Trello API so it is expected for the next iteration. 
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● In UCS3 and UCS4 we have had to make considerable changes to the initial plan after a 

collaboration that did not succeed in providing all of the required CI/CD tooling. Thus, we have 

pivoted to design and implement an in-house system for AI-assisted assets inspector and 

deployment manager. For the first part it is still unclear how to use AI models to link lists of 

software assets in a bundle to expected operation. For the second, an evolution of the logs 

analysis used in UCS1 and also a planned collaboration with Westermo for generalised logs 

analytics is the current line of research. 

7.7. Planned demonstration  

It is expected that for future phases of the project at least Use Case Scenarios 1 and 2 can be fully 

demonstrated. Given that UCS2 has an explicit UI (the Trello board used for the requirements) that can 

be used as a visual example (e.g. the process of creating a requirement and automatically tagging and 

assigning it can be showcased), it might be the most viable demonstration as it can readily show the 

results of the processing. 
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8. PRO_CS07 case study “Smart Port Platform 
Monitoring (SPPM)” 

8.1. Case Study description 

The case study is based on an Industry 4.0 Big Data solution in charge of monitoring the activities of a 

port in real time, through the analysis of data from sensors (IoT) installed in the port's air quality 

stations, cranes, parking slots, ships and information systems (legacy and external systems). Thanks to 

this solution, port operators can better monitor in real time the productivity and problems of all the 

operations carried out in the ports. It also allows the analysis of historical data to review past 

productivity and problems as a forensic review. 

Additional objectives/challenges would be the detection of specific or recurring bottlenecks in the port 

in order to detect them as quickly as possible, even predicting them in advance if possible, since these 

bottlenecks are associated with a loss of productivity and, consequently, a greater economic loss. 

Therefore, a correct definition of the architecture for processing the large amount of information 

produced (big data platform) and the necessary customisation for each port and terminal (automation 

of customised deployments with different cloud providers) would be desirable, since the correct sizing 

of an infrastructure avoids oversizing and, therefore, reduces monthly operating costs. 

On the other hand, monitoring the running platform is another important aspect to ensure that the 

information is processed correctly and then all this information collected by the system can be used to 

determine anomalies and behavioural patterns to predict future problems, and even suggest 

infrastructure resizing to improve the quality and availability of the solution. 

The main challenges of SPPM Use Case are: (1) the definition of a customizable infrastructure 

independently of the cloud provider; (2) improve the validation of the platform provisioning; (3) 

monitoring the platform and detect anomalies in the infrastructure and data gathering, and (4) predict 

future problems and try to automatically correct them.The Case Study Synopsis is in Table 8.1. 

Table 8.1 Synopsis of the case study Smart Port Monitoring Platform 

Use case scenario PRO_UCS1— Infrastructure as code (IaC) 

  Description: We want to use a mechanism for defining the deployments that is easily 
adaptable to each new project, for this we will use IaC languages for the 
definition of the infrastructure to be deployed. 

Requirements: PRO_R01- IaC Deploy different providers, 

Tools: Terraform, PIACERE-IDE (PRO) 

KPI: PRO_UCS_1_KPI_4.1_1 

Use case scenario PRO_UCS2— Automatic validation of the platform provisioning 

  Description: Develop a tool that ensures the correct deployment of the infrastructure 
automatically. 

Requirements: PRO_R04- Test infrastructure 
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Tools: TATAT (PRO) 

KPI: PRO_UCS_2_KPI_3.1_1 

Use case scenario PRO_UCS3 — Detection of anomalies of the platform performance 

  Description: This use case focuses on data monitoring and anomaly detection. This is a 
double objective: on one hand verify that the data collection is correct and on 
the other hand the use of AI techniques to detect possible anomalies. 

Requirements: • PRO_R05- Detect anomalies + SLA 

• PRO_R07- Monitor Platform 

Tools: • Position Monitoring for Industrial EnvironmenT (ACO),  

• AsyncAPI Toolkit (UOC),  

• Prometheus, Grafana 

KPI: PRO_UCS_3_KPI_1.2_1 

Use case scenario PRO_UCS4— Detection and correction of service interruptions 

  Description: The objective of the scenario is to apply AI techniques, in order to automatically 
recover the system after a problem or malfunction. 

Requirements: • PRO_R06- Predict demand  

• PRO_R07- Monitor platform 

Tools: Position Monitoring for Industrial Environment (ACO) 

KPI: • PRO_UCS_4_KPI_1.1_1 

• PRO_UCS_4_KPI_3.1_1 

Use case scenario PRO_UCS5 — Resizing of resources based on current workload 

  Description: In this use case, we try to prevent future problems by applying prediction 
techniques. 

Requirements: • PR0_R06- Predict demand 

• PRO_R08- Self Learning / Self Healing 

Tools: • ak2-modev (ITI), 

• ak2-depman (ITI) 

KPI: PRO_UCS_5_KPI_4.2_1 

8.2. Use case scenario PRO_UCS1 — Infrastructure as code  

First scenario is the automatic deployment of the solution based on Infrastructure as a Code (IaC). At 

the beginning of the project, the normal flow of the deployment is as follows: first of all, the 

architecture and the components/nodes of the platform are estimated, then the Dev team prepare 

the solution based on the architecture definition and a DevOps specialist define a Amazon Web 

Services (AWS) IaC of the solution and the specialist deploy the solution in AWS adding some 

monitoring tools of the platform using AWS solutions. 
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8.2.1. Summary of preliminary results 

Before the AIDOaRt project, PRO did not have any experience in doing deployments using IaC. The 

deployments were done fully manual using the web Application of AWS without using any automation. 

To carry out the manual deployment, a scheme with the necessary infrastructure to host the 

application was created, security aspects were considered in this initial deployment. 

The templates were manually rewritten in the Terraform25 format. Some Terraform files that deploy 

the entire infrastructure to receive, analyse and monitor the data that has been collected from 

maritime sensors have been made (completely manually). Moreover, Terraform can be configured to 

deploy the Docker composition in an AWS EC2 instance26, with specific characteristics. 

Therefore, we can deploy the entire infrastructure with ease using less time than at the beginning. This 

reduces the costs of the deployment significantly (50%). The deployment has been 70% automated 

using Terraform templates. 

8.2.2. Evaluation of results considering requirements coverage 

● PRO_R01 - Use an Infrastructure as Code Language able to deploy the solution in different cloud 
providers and using different architectures / approaches ( Containers & virtual machines) 

From a requirement point of view (defined in D1.1 [1]), it can be said that 75% of the requirements 

have been covered because with the use of Terraform, it is easier to adapt deployments to different 

service providers. However the ultimate goal is to use MDE (Model Driven Engineering) to define our 

Use Case requirements and automate 100% of the deployment. Also, we are trying some of the tools 

developed in another European project called PIACERE (https://piacere-project.eu/) to optimise the 

creation of the Terraform templates. In particular, the tools specified in the development phase of the 

solutions will be used: 

● DOML: DevOps Modelling Language, it allows modelling the automation of the whole lifecycle 

of DevSecOps activities. 

● PIACERE IDE: it is an integrated development environment (IDE) to develop infrastructural 

code that it will unify the automation of the main DevSecOps activities and will shorten the 

learning curve for new DevSecOps teams.  

● ICG: Infrastructural Code Generator, it translates DOML specification into source files for 

different existing IaC tools. In this particular UCS , the target language will be a Terraform 

specification. 

 
25 https://www.terraform.io/ 
26 https://aws.amazon.com/ec2/?nc1=h_ls 

https://piacere-project.eu/
https://www.terraform.io/
https://aws.amazon.com/ec2/?nc1=h_ls


   

 

  Page 113 

 

AIDOaRt Project nr. 101007350   

8.2.3. Evaluation of results considering KPIs 

From a KPI point of view, the objective has already been achieved as the target was to reduce the 100 

hours needed to prepare a deployment manually and now the time has already been reduced from 

100 hours (on average) to 61. This implies that there has been a significant improvement in 

productivity in the percentage range in the DevOps process as set out in the KPI target for this scenario 

(Table 8.2). 

Table 8.2 Case study KPI “PRO_UCS_1_KPI_4.1_1” 

KPI Identifier: PRO_UCS_1_KPI_4.1_1 Scenario Identifier: PRO_UCS1 

KPI Description: Improve productivity by reducing the effort needed in the DevOps process, by 
automatizing the deployment process using IaC. For this KPI, the time to develop 
an infrastructure deployment will be measured in hours. 

Refined 

AIDOaRt KPI: 

Description: Productivity improvement in the range of the percentage in the 
DevOps process. 

Identifier: KPI_4.1 Target  ≥ 30% 

KPI Measure: k = percentage of improvement taking a totally manual development as reference 

KPI Baseline: Source: 100 hours to develop a new infrastructure manually. 

Value: k0 = 100 

Target: Decrease: 100·Δ/k0 = 100·(k0 - k)/k0  ≥ 30%  

D5.6 Measure: Value: k6 = 70 100·Δ6/k0 = 100·(100 - 70)/k0 = 30% 

D5.7 Measure: Value: k7 = 66 100·Δ6/k0 = 100·(100 - 66)/k0 = 34% 

8.3. Use case scenario PRO_UCS2 - Automatic validation of the 
platform provisioning 

At the beginning of the project each deployment had to be carried out by the operations team and this 

required a lot of time. The aim of this scenario is to ensure that the infrastructure is automatically 

evaluated and tested after each deployment. 

8.3.1. Summary of preliminary results 

As commented in previous deliverables, TATAT tool contributes to the use case scenario PRO_UCS2, 

where the challenge is to improve the validation of the SPMP after each deployment. TATAT is a 

solution that orchestrates the execution of automatic tests and it can be used to validate the 

deployment of the SPMP. This tool allows once defined a set of automated tests to validate the 

different configurations of the SPMP (using any test automation tool that allows test execution through 

a command line or API). These tests can be run on demand after each deployment by TATAT, taking 

into account the specific configurations of the deployment. 

The TATAT tool is completely ready to use with Cucumber (https://cucumber.io/) and Selenium 

(https://www.selenium.dev/), and bash scripts. 

https://cucumber.io/
https://www.selenium.dev/
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8.3.2. Evaluation of results considering requirements coverage 

● PRO_R04 - Automatically test the architecture (infrastructure tests) 

Taking into account the requirements (defined in D1.1 [1]), most of them have been covered with the 

TATAT tool, as it allows to check if the defined infrastructure has been deployed correctly by launching 

a series of tests that the user must define beforehand to check that everything is correct. The only 

thing missing is the execution of a larger number of tests, which will be carried out in the following 

months. 

 

8.3.3. Evaluation of results considering KPIs 

As mentioned in the previous point, there is still more testing to be done with real scenarios to cover 

the target set in the KPI (Table 8.3). The objective is to "Increase in the percentage of the automated 

parts of the processes which are currently manual" and this has already been achieved because 

previously there were no automated checks and now there are, but it remains to be tested how many 

of these checks that were previously done manually can be automated. 

Table 8.3 Case study KPI “PRO_UCS_2_KPI_3.1_1” 

KPI Identifier: PRO_UCS_2_KPI_3.1_1 Scenario Identifier: PRO_UCS2 

KPI Description: Increase in the percentage of automated tests when validating the infrastructure 
after each redeployment (at first the validation is made manually). For this KPI, 
the % of automated tests out of the total number of tests will be measured. 

Refined 

AIDOaRt KPI: 

Description: Increase in the percentage of the automated parts of the 
processes which are currently manual. 

Identifier: KPI_3.1 Target  ≥ 30% 

KPI Measure: k = percentage of automated tests versus total number of tests required to 
validate the deployment of the platform  

KPI Baseline: Source: 0, no tests were automated at the beginning of the project 

Value: k0 = 0% 

Target: Increase: 100·Δ/k0 = 100·(k – k0)  ≥ 30%  

D5.6 Measure: Value: k6 = 1% 100·Δ6/k0 = 100·(0.01 – 0) = 1% 

D5.7 Measure: Value: k7 = 10% 100·Δ7/k0 = 100·(0.1 – 0) = 10% 

 

8.4. Use case scenario PRO_UCS3 - Detection of anomalies of the 
platform performance 

In complex scenarios like smart ports, it is essential to understand the environment's time evolution. 

The goal of this use case scenario consists of finding problems in the collected data and ensuring that 

all devices linked to the Smart Port Platform are behaving as agreed. 
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8.4.1. Summary of preliminary results 

Two partners are involved in this UCS3. Firstly, UOC provides a tool based on the AsyncAPI specification 
to formalise and (semi)automate the design and implementation of APIs for message-driven 
architectures, ensuring its data integrity in terms of syntax correctness. In this scenario, a definition of 
the architecture (including components, messages, and topics) from the ports and the AIDOaRt 
framework was created using the graphic modeller plug-in in the AsyncAPI Toolkit. As a result of the 
model-to-text transformations that the tool provides, more than 9,000 lines of API code were 
automatically generated from the model. Additionally, a quality of service agreement has been defined 
as a set of service-level objectives which have been integrated in the generated code as JSON 
information. These JSON definitions have been validated against an extension of the AsyncAPI 
specification aimed to define the quality of service for asynchronous messaging, which tailors the 
ISO/IEC 25010 quality model and the key concepts of WS-Agreement [17]. 
 
The second collaboration is with ACO which is contributing by investigating, developing and evaluating 
a generic anomalies analysis (GAA) solution applied on time series, which is expected that can be 
eventually applied at two levels: 

● On signals monitored at an industrial plant, i.e. on a maritime port in this use case.  
● On execution traces at embedded-level, specifically, on traces from runs of virtual models 

based on virtual platforms (VP), e.g. a virtual model of a PIoT device. 
 
From D5.6 [9], up to now, relevant progress has been made. A main focus has been done on developing 
the edge monitoring infrastructure. So far, a former version of the gateway for enabling monitoring 
and analysis at operation time (AIOps) has been implemented and demonstrated (at past Västerås 
plenary meeting). This gateway can run the required services to read sensor data from an Ethernet 
port, to dump them on an edge time series database (Influx) and to run initial versions of the Generic 
Anomalies Analysis (GAA) investigated. This gateway is a main element of the edge infrastructure for 
sensor data gathering (positioning data among it), as it connects sensors to the cloud, and thus 
enabling remote monitoring, analysis and management. Relying on this gateway, and in direct relation 
to UCS3, a former demo of detection on a non-straightforward anomaly on load-unload operation of 
a fixed crane (e.g. STS) has been run. The load-unload operation data was synthetically generated, 
considering value ranges and feedback from Prodevelop. At this phase of the development, this is 
being beneficial for understanding the automated learning possibilities and limits of the DL-based 
analysis, and moreover to ensure a ground truth in terms of “real anomalies” which enable a more 
quantitative validation. 
 

8.4.2. Evaluation of results considering requirements coverage 

● PRO_R05 - Detect automatically Anomalies in the solution during the execution based on AI  

● PRO_R07 - Monitor the platform in real time to reduce the downtime and the data lost 

Taking into account the coverage of the requirements (defined in D1.1 [1]), it cannot yet be stated that 

they are fully met. However, the evolution of the model being built to monitor and automatically 

detect anomalies in the quality of service is progressing as expected, and will allow us to comply with 

requirement PRO_R07, and additionally enable PRO_R05 (section 4.7, deliverable D1.1 [1]). 
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Regarding requirement PRO_05, work has been done on enabling Generic Anomaly Analysis (GAA) at 

the edge and preliminary results advance a good line of progress in achieving the requirement, as 

already shown in the demonstration at the GA meeting in Sweden (Figure 8.1). There, a case of 

container loading and unloading operation showed the possibility to detect, not only explicit but also 

subtle anomalies.  

Figure 8.1 shows Grafana panels of the monitored signals. On top of it, the combination of the 3 

considered signals (load height, load operation time and load tension) is shown. Below, each of them 

is represented in its own panel. The GAA yields a set of anomaly intervals, which are represented by 

their start and end boundaries (dotted red lines). The core DL-based anomaly detection performs an 

anomaly inference per sample. A clustering algorithm groups detected anomaly samples into anomaly 

intervals, relying on the presumption that closer anomaly detections are likely related by the same 

anomaly origin.  

It is important to highlight that in the presented test case, the detected anomaly intervals were 

reflecting unprecedented combinations of load stress when considering both, load weight and load-

unload operation time, capable of causing stresses and an eventual breakage event. These were subtle 

anomalies in the sense that none of the monitored signals were out of nominal value, not even out of 

the historical ranges observed in the training.  

 

Figure 8.1. Grafana-based visualisation of anomaly intervals in the load-unload operation detected 

after GAA ran on the gateway.  

In addition, the gateway base load was measured (~25% CPU, 2G RAM, <11GB disk) for a benchmark 

considering a basic data transfer to the gateway. When running the GAA, the gateway consumed ~75% 

CPU, keeping RAM and disk consumption about the same, which can be assessed as an affordable load 

on top of the base monitoring infrastructure for the designed GW. 

8.4.3. Evaluation of results considering KPIs 

The final asset that is planned for this use case scenario is a monitoring dashboard capable of 

identifying violations of the quality of service agreements agreed upon to the parties involved in real 

time. So far, we have made progress in generating the definitions required for automatically generating 
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such a dashboard following a model-driven approach. The next steps include the MDE code for 

transforming the service level objectives defined in JSON format to a running dashboard. When 

finalised, we will be able to measure the number of anomalies automatically detected and contrast 

that figure against the total occurrences. 

At the edge side, as reported on the previous section, synthetic data was injected and analysed in the 

edge monitoring infrastructure. Synthetic data enabled full control on the injection of synthetic 

anomalies on the test data sets. This way, a ground truth is available where it is known which load-

unload operations are normal and which ones have anomalies, which in turn enables the quantitative 

evaluation of detection accuracy. This will be explained in more detail as follows: On top of Figure 8.2, 

the measured tension (load weight per gravity) is represented in red. Notice this is a measurable 

parameter that can be, and indeed was monitored and displayed in the Grafana dashboard (Figure 

8.1). On the bottom of Figure 8.2, the relation (tension x operation time) is displayed (this is not a 

measured parameter), it is just a computation performed in the experiment that reflects the 

anomalies. The innovation is subtle in the sense that it does not provoke any of the monitored 

parameters to exceed any historical max/min value. However, the relation of two parameters (tension 

and operation time) exceeds in some cases (as designed in our experiment) the limit (max. value) for 

the historical values of the (tension x operation time) relation observed in training. Such a limit is 

reflected by the black horizontal line at the bottom of Figure 8.2 . This anomaly is detected in most of 

the cases by ACO GAA solution as reflected on the light green intervals of Figure 8.2, which corresponds 

to the anomaly intervals of Figure 8.1. A main advantage of this synthetic data set is that the exact 

amount of subtle anomalies, i.e., the amount of times the green signal exceeds the black horizontal 

line threshold can be counted, which makes possible a quantitative evaluation of the confidence of the 

GAA for this case. 

 

Figure 8.2. Evaluation based on synthetic data enabled accuracy evaluation of the GAA method.  
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Specifically, in the test demo shown in the third AIDOaRt plenary meeting in Västerås (Figure 8.2), 57 

load/unload operations were simulated in a test where 35 of those load/unload operations were 

anomalous (due to the aforementioned subtle stress relation). This enabled us to compute the 

confusion matrix, and rate the accuracy of the method. For this case, the DL-based GAA method 

reached an optimum value, 81% accuracy in a test of 57 load/unload operations. This accuracy figure 

considers 35 correct anomaly detections (out of 57 operations) and 11 right normal load/unload 

operations (in a case where no false anomalies are detected).  

A very interesting observation was that, when the configuration considered 100% of the training 

history as part of normality, it involved a degradation of the detection accuracy down to 40%. This was 

due to the high number of missed anomalies (34 out of 57). However, it was also found that, if the 

percentage of training data considered normal falls below certain level (e.g., 95%), then the accuracy 

is also remarkably degraded, e.g., down to 61% for the previous 95% (Figure 8.2), due to the increase 

in false positives (detection of false anomalies). 

The following table (Table 8.4), shows the definition of the KPI, the target and the iterations that have 

been done for this particular scenario: 

 

Table 8.4 Case study KPI “PRO_UCS_3_KPI_1.2_1” 

KPI Identifier: PRO_UCS_3_KPI_1.2_1 Scenario Identifier: PRO_UCS3 

KPI Description: Increase in the percentage of detection of anomalies in the infrastructure. For 
this KPI, the % on anomalies automatically detected out of the total number of 
anomalies will be measured. 

Refined 

AIDOaRt KPI: 

Description: Increase in the percentage of the automated early detection of 
system anomalies. 

Identifier: KPI_1.2 Target  ≥ 30% 

KPI Measure: k = percentage of automatically detected anomalies versus total number of 
anomalies and problems occurred during operation of the platform  

KPI Baseline: Source: Anomalies occurred during the operation of the platform but 
initially no anomalies are being automatically detected.  

Value: k0 = 0% 

Target: Increase: 100·Δ/k0 = 100·(k – k0)  ≥ 30%  

D5.6 Measure: Value: k6 = 1% 100·Δ6/k6 = 100·(0.01 – 0 = 1% 

D5.7 Measure: Value: k7 = 5% 100·Δ7/k7 = 100·(0.05 – 0) = 5% 
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8.5. Use case scenario PRO_UCS4 – Detection and correction of service 
interruptions 

In order to provide self-healing capabilities, it is needed that the problems are detected as soon as 

they occur, or even better, before they happen. This self-learning mechanism is related to the 

PRO_UCS_03 that is in charge of monitoring the system, which is a prerequisite of this scenario. 

8.5.1. Summary of preliminary results 

With regard to the positioning solution, several advances can be also reported. The positioning sensing 
requirements have been finally resolved. This was an important discussion, as the specific port element 
to be positioned was fixed (straddle carrier), and as a consequence, a diverse set of requirements, in 
terms of update rate, precision, environment protection, and presumed scenario facilities (e.g., 
powering, connectivity). Based on this, a former solution design is ready, composed of a base station 
device and a Positioning IoT (PIoT) per crane to be positioned. A first version of the hardware design 
of the base station and of the PIoT has been done. Software and application developments are on-
going.  
 
When it comes to the application to the GAA at embedded-level, the advance done so far refers to 
having a tracing platform able to dump to a database, so that the GAA can be applied in a similar way 
as for the time-series at the distributed level (i.e., against the time series database and with similar 
formats). With regard to the D5.6 report [9], tracing capabilities from the VP-based virtual model have 
been extended, to support multi-level tracing at all the relevant levels, i.e., application, RTOS and HW 
VP levels. Moreover, these multi-level traces, previously dumped to CSV format, can be now dumped 
to a time-series database. Therefore, a former basis for the application of the GAA methods to 
embedded-level signal sets, explored so far for signal sets on the distributed-level, is settled.  
 
 

8.5.2. Evaluation of results considering requirements coverage 

● PRO_R07 - Monitor the platform in real time to reduce the downtime and the data lost 

The work of ACORDE Position Monitoring for Industrial Environment contributes to PRO_R07 (defined 
in D1.1 [1]), in a way that not only contributes to the real-time monitoring of the position of the 
different elements working in a Smart Port, but also helps to reduce downtime and lost data because 
it is able to keep track of the position of the different vehicles working at the same time on the platform 
and send alerts as soon as one of them deviates from its normal behaviour. 

 

Further testing, both in a laboratory and real-world environment, is still needed, but progress is 
promising. 

 

8.5.3. Evaluation of results considering KPIs 

As discussed in the previous UCS, using the tool developed by ACO, tests have been carried out with 

synthetic data (to control the gold standard). The results obtained with this experience, as in UCS3, 

also demonstrated the potential of the technology to anticipate/reduce the detection time of 

problems to potential problems (Table 8.5 and Table 8.6). For example, in some of the tests performed, 



   

 

  Page 120 

 

AIDOaRt Project nr. 101007350   

the first anomaly is detected more than 5 hours before the final failure. Obviously, this depends on 

how the synthetic test with anomalies is designed, but the results are promising. 

Table 8.5 Case study KPI “PRO_UCS_4_KPI_1.1_1” 

KPI Identifier: 
PRO_UCS_4_KPI_1.1_1 

Scenario Identifier: PRO_UCS4 

KPI 
Description: 

Reduction of the time needed to detect a problem in the platform with the 
collected data. For this KPI, the time needed from the occurrence of the problem 
until the detection of it will be measured.  

Refined 

AIDOaRt KPI: 

Description: Improvement (reduction) in the percentage of the time required 
for identification of problems in the platform (thanks to the 
analysis of the collected data). 

Identifier: KPI_1.1 Target  ≥ 25% 

KPI Measure: k = time reduction in minutes 

KPI Baseline: Source: current availability statistics (logs) 

Value: k0 = 360 

Target: Decrease: 100·Δ/k0 = 100·(k0 – k)/k0  ≥ 25%  

D5.7 Measure: Value: k7 =  100·Δ/k7 = 100·(360 - 300 )/360 20% 

PRO_UCS_4_KPI_3.1_1 

Table 8.6 Case study KPI “PRO_UCS_4_KPI_3.1_1” 

KPI Identifier: PRO_UCS_4_KPI_3.1_1 Scenario Identifier: PRO_UCS4 

KPI 
Description: 

Automate the detection and correction of system crashes (based on Self-learning 
and Self-healing techniques). For this KPI, the % of recurrent system crashes 
automatically solved will be measured. 

Refined 

AIDOaRt KPI: 

Description
: 

Increase in the percentage of infrastructure crashes that can be 
automatically solved. 

Identifier: KPI_3.1 Targe
t  

≥ 30% 

KPI Measure: k = percentage of crashes automatically corrected versus total number of crashes 
occurred during operation of the platform 

KPI Baseline: Source: 0% Non-automatic correction implemented 

Value: k0 = 0% 

Target: Increase: 100·Δ/k0 = 100·(k – k0)/k0  ≥ 30%  

Tests have not yet been carried out for the last KPI because the mechanisms for correcting system 

crashes are not yet in place. This phase is foreseen for a later stage when the automatic detection is 

fully polished and as reliable as possible. 
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8.6. Use case scenario PRO_UCS5 – Resizing of resources based on 
current workload 

This use case focuses on preventing future problems from occurring by using modelling techniques to 

help predict the behaviour of the infrastructure. 

8.6.1. Summary of preliminary results 

The initial results achieved for UCS5 are as follows: 

Developing new modelling artefacts to accurately represent the dynamic behaviour of the workload 
of the smart port platform. The smart port platform is composed by: (1) a centralised computing 
platform responsible for processing the messages coming from the IoT devices and the Terminal 
Operating System (TOS); and (2) hundreds of these IoT devices and Gateways that are deployed over 
the port infrastructures, mainly different kind of cranes, trucks and tractors. 

The main challenges that have been addressed are twofold. On one hand, the IoT devices, and the 

corresponding workload they generate, are only active depending on the TOS assignments for a given 

ship arrival schedule. Modelling these activation intervals requires a second level of scheduling and a 

set of pseudo-activities that allows art2kitekt (a2k) tool suite to properly simulate and evaluate the 

smart port behaviour (Figure 8.3). 

 

Figure 8.3 - Smart Port Simulation Environment. 

On the other side, the application model required to represent the smart port platform is quite large, 
mainly due to the amount of IoT devices that are involved and the number of modelling artefacts that 
are needed to activate and deactivate the low-level activities when a ship arrives or departures. To 
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tackle the introduction of these application models and the new scheduling artefacts, a tool for 
importing large models based on simple spreadsheets has been developed. All the data required to 
build the model can be easily introduced by the UC provider in a custom spreadsheet that is then 
processed by this new tool and the resulting models are imported into the art2kitekt tool suite for its 
evaluation. 

New algorithms for automatic placement of software services in a complex cyber-physical system (a2k-

optimiser) have also been developed and researched. The system is represented as a graphical 

network of processing elements interconnected by communications links with various properties such 

as transmission bandwidth, latency, cost, etc. (Figure 8.4). This model can be generated from the 

methods described in the previous paragraphs. The software running on the processors is also 

represented as a graph which models the dependencies of each software service along with the 

resources it requires, such as its worst-case execution time. A set of optimisation objectives and 

constraints have been identified and defined to allocate the software services to specific processing 

nodes. These objectives include: power consumption, end-to-end latency, service spread, and 

resource usage, amongst others. Constraints include ensuring all the software tasks meet their 

required deadlines and that the processors are not overloaded. The a2k tool suite has been used to 

calculate system timing metrics (e.g., task response times) as well as simulation to obtain visual 

chronograms of multiple tasks sharing a computing resource and thus interfering with each other. 

Several multi-objective optimisation solution methods are currently being evaluated, including, for 
example, genetic and evolutionary algorithms, simulated annealing, and particle swarm algorithms.  
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Figure 8.4 - Graph of Possible Smart Port Architecture showing processing nodes (blue: IoT devices, green: 
gateways, cyan: fog processors, red: cloud servers). 

Developing prediction methods to help resize resources at the IoT device level: firstly, seven regression 
models have been evaluated and compared to determine which model can estimate different 
parameters with the best performance. The main idea is to estimate the optimal workload with the 
smallest error. With this purpose, the following regression models have been adjusted and compared: 
Linear Regression, Ridge Regression, Lasso Regression, Elastic Net, Support Vector Regression, Random 
Forest Regressor, and XGBoost Regressor. The XGBoost model showed the best performance and was 
selected for subsequent analysis. 

Next, the selected regression model has been adapted for time series prediction (Figure 8.5). This way, 

it could also be used to predict the system’s behaviour and recommend system mode changes before 

anomalies related to workload arise. The main idea is to apply the regression model using sliding 

windows that move forward through time. To do this, we compose each observation with information 

from n time instants (window size: t-n, … t-2, t-1), which will be used to predict the next instant (t+1). 

Finally, the previous model has been modified so that it is possible to predict several time instants (t+1, 
t+2, t+3 ...). This change has been studied in two ways: 

1. Direct multi-output. The multiple-output regression problem is divided into multiple single-
output regression problems. This strategy consists of fitting one regressor per target. 
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2. Chained multi-output. The multiple-output regression problem is divided into dependent 
single-output regression problems. In this strategy, each model makes a prediction in the order 
specified by the chain using all the available features provided to the model plus the 
predictions of models that are earlier in the chain. 

All the algorithms have been developed using simulated data created by ITI. The necessary pipeline 
has also been developed to prepare the different models (Regression, Simple Prediction, Multiple 
Predictions) for their deployment. 

 

Figure 8.5 - Workflow used for the development and validation of prediction models. 
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A preliminary model for the analytical estimation of gateway device performance has also been 

developed through collaboration between ACORDE and ITI (Figure 8.6). 

   

 

Figure 8.6 - Initial gateway model (structural and sequential diagrams). 
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This model is under refinement. The main purpose is to enable the possibility to predict the potential 
performance and enable feasibility assessment, or find needs for platform redimensioning, when the 
expected operational conditions for the gateway have to be changed, e.g., to support more sensor 
connections, different sensor bandwidths, more bandwidth with the cloud, or run heavier anomalies 
analysis.  

8.6.2. Evaluation of results considering requirements coverage 

● PRO_R06 - Detect and predict high/low resources demand based on AI 

● PRO_R08 - Self-healing and self learning solution to minimise the downtime of the platform by 
detecting and correcting the problems automatically. Avoiding the manual recovery of the 
problems 

 

The smart port computing architecture model allows for system timing analysis and simulation of the 
smart port architecture with different load demands. This approach is used to detect potential 
computational and communications bottlenecks. Therefore, it covers the requirement PR0_R06 - 
Predict Demand (defined in D1.1 [1]). 

 

Regarding the development of prediction methods to help in the resizing of resources at the IoT level, 
the work carried out has been approached in two different ways:  

1. On the one hand, the development of regression models to estimate the optimal workload 
from data corresponding to different system conditions. This work is trying to cover the case 
study requirement PRO_06 - Predict demand. 

2. On the other hand, the development of prediction models that employ sliding windows to 
predict the system's behaviour and anticipate behaviour. In this way, future problems due to 
overload or lack of resources (PRO_06-Predict Demand). This prediction is intended to 
recommend system mode changes before anomalies arise, which is related to the case study 
requirement PRO_R08- Self Learning / Self-Healing. 

 

8.6.3. Evaluation of results considering KPIs 

Table 8.7 Case study KPI “PRO_UCS_5_KPI_4.2_1” 

KPI Identifier: PRO_UCS_5_KPI_4.2_1 Scenario Identifier: PRO_UCS5 

KPI 
Description: 

Automate the resizing of resources by developing a high-level model of the smart 
port computing architecture to modify the platform’s capability, anticipating 
future problems from occurring. For this KPI, we will anticipate % of future 
problems related to bottlenecks. 

Refined 

AIDOaRt KPI: 

Description: Quality Improvement in the percentage by improving 
predictability, conformance to specifications and proposal of 
system design refinements. 

Identifier: KPI_4.2 Targe
t  

≥ 30% 
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KPI Identifier: PRO_UCS_5_KPI_4.2_1 Scenario Identifier: PRO_UCS5 

KPI Measure: k = Number of problems caused by excessive platform loading predicted before 
they occurred. This requires monitoring for such problems and checking whether 
the generated model had predicted them. 

KPI Baseline: Source: Non-automatic correction implemented 

Value: k0 = Not yet calculated. 

Target: Decrease 100·Δ/k0 = 100·(k0 – k)/k0  ≥ 30%  

In this section, preliminary results will be assessed with the KPIs (Table 8.7) for the Scenario-5 in this 

use case. 

● Modelling, Load Simulation, Analysis & Optimisation: We are working towards assessing the 

solutions using a slightly modified version of the performance index PRO_UCS_5_KPI_4.2_1.  

The goal is to eventually enable the operation of a system with zero potential for system 

crashes. The aim is to provide sufficient computing resources to the port architecture under 

the different loads expected throughout the day and night. The amount of “sufficient 

computing resources” will eventually be determined by our simulation, timing analysis, and 

optimization tools. The idea is to have a baseline platform architecture which is dynamically 

extended when an increased processing load demand is predicted by port handling 

requirements, and conversely reduced when a lower demand is predicted. While, at this stage, 

the exact performance metrics are still under investigation and development the baseline KPI 

will be calculated from a simulation of this static platform architecture under high demand 

conditions. Then the expected KPI improvement can be measured by simulation of the 

dynamic architecture algorithm. 

● Prediction Methods: Developing prediction methods to help in the resizing of resources at the 

IoT device level: one way to measure the system crashes automatically solved 

(PRO_UCS_5_KPI_4.2_1) is by developing models capable of estimating/predicting the 

required system resources with minimal error. The smaller the error, the more reliable the 

estimation/prediction. Consequently, the probability of avoiding failure increases. 

To this end, the metric used to evaluate the performance of the developed regression and 

prediction models has been the R2-score, a popular metric for identifying model accuracy. It 

ranges from 0 to 1; the closer the value is to 1, the better the prediction and, therefore, the 

smaller the error and the greater the probability of avoiding failures. If R²-score equals 0, the 

model is not performing better than a random model. 

So far, the developed models have been evaluated using a simulated dataset unrelated to the 

use case. However, new data already related to the use case is being simulated, so it is 

expected to adjust and validate the models developed with the latest data and see the error. 
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8.7. Planned improvements 

● The roadmap for the AsyncAPI Toolkit encompasses the development of a real-time 

monitoring dashboard. This dashboard will be automatically generated from the quality of 

service agreement and its set of service-level objectives specified via the domain-specific 

language already provided. The dashboard will be capable of identifying violations of such 

objectives by design. 

● Modelling and Load Simulation: It is planned to validate the system models using more 

accurate and realistic architecture data and parameter values (e.g., execution times, software 

dependencies, communications latencies, etc.) This plan will require close collaboration with 

the partners ITI, PRO, and ACO. The a2k analysis and simulation software will also have to be 

extended with some new modules to model the behaviours of the smart port. These will 

include, for example, components to represent novel artefacts of the port system (e.g., models 

for the ACO sensors and gateways, analysis and simulation of hierarchical schedulers, tasks for 

modelling messages held in queues, and tools for managing extensive models and multiple, 

possibly noisy, communications paths).  

● Architecture Optimisation: It is planned to investigate in more detail the use of different multi-

objective optimisation algorithms for the allocation of the software services to the processing 

nodes in the network. An important feature of multi-objective optimisation is that a solution 

is not a unique point in the search space. Rather, it is a set of potential solutions (the Pareto 

set). Therefore, a second stage of intelligent searching is needed to choose an appropriate 

solution from this Pareto set. Research is currently underway on how to do this in the context 

of the smart port. Further work is also needed towards closer integration of the analysis tools 

which are being developed. Currently we are using the internal a2k software tool suite to 

perform the modelling as well as the timing analysis and simulation activities. On the other 

hand, MATLAB27 tools are being employed for optimisation and graphics output (gamultiobj 

toolbox). The intention is, once a good optimisation method is identified, to recode this 

directly into a2k. 

● Prediction Methods: The regression and prediction models will be adjusted and validated using 

a new simulated dataset (IoT device level). On the one hand, to estimate the optimal workload 

from the data corresponding to specific system conditions and, on the other hand, to predict 

the optimised frequency for a real-time task set.  

For the Generic Anomalies Analysis the planned improvements are: 

● Extension of analysis to additional monitored signals, specifically positioning signals of straddle 

carriers. The analysis will be done first for synthetic data models, ranging from simple ideals 

to more realistic models, to assess the capabilities and limits in the GAA method for this 

scenario. 

 
27 https://es.mathworks.com/products/matlab.html 

https://es.mathworks.com/products/matlab.html
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● Complete Implementation of positioning sensing solution (PIoT). The first goal is first to 

validate its integration with the gateway. Together the PIoT will complete the edge monitoring 

infrastructure.   

● Complete second version of the gateway.  

● Achieve a former analytical model of the gateway able to perform a basic feasibility analysis, 

e.g to assess which analysis loads can be run on the gateway. 

Depending on the smooth run of previous tasks, and the efforts remaining, also expect to have the 

possibility for: 

● Data retrieval in operational conditions. Use the PIoT developed in real operational conditions 

to retrieve actual 2D positioning data and assessment vs the synthetic evaluations. 

● Have a former experience to apply the GAA method on traces from a virtual model of a 

positioning device.  

8.8. Planned demonstration  

At the end of the project, two demonstrators will be ready. 

On the one hand, it will be delivered a demonstration of the a2k software tool applied to the smart  

port use case scenario 5. This demonstration will illustrate the following results: 

● High- and low-level modelling, simulation, and timing analysis of the smart port architecture 

in different configurations.  

● Design Space Exploration using multi-objective optimisation algorithms with non-linear 

constraints for the allocation of software modules to processing nodes under different system 

architectures. 

● Machine Learning-based prediction algorithms for control of CPU clock frequencies with the 

objective of power aware-optimisation. 

And on the other hand, it will present an extended version of the demonstrator shown at the last 

plenary meeting in Västerås. The new demonstrator will be able to: 

● Demonstrate the applicability of GAA to additional types of data, i.e., to positioning traces 

monitored on mobile cranes (straddle carriers), which it will increase the diversity of 

monitored signals, and should serve to show the challenge to tackle such generality (in terms 

of number and types of signals) and specificity (port operation signals) at the same time 

● Show a consolidated I/O interface for the GAA functionality, adding hints on the anomaly 

origin.  

All this second demonstrator will be running on the edge device (gateway) designed and implemented 

by ACORDE, as was done in past Västerås demo.  

Depending on the eventual availability of results of some parallel activities (2nd version of gateway 

platform, pilot data) and remaining effort for the demo, a more ambitious demo configuration will 
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target showing the implementation over the second optimised version of the gateway platform; 

and/or using pilot data, to demonstrate higher TRLs.  
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9. TEK_CS08 case study “Agile process and 
Electric/Electronic Architecture of a vehicle for 
professional applications”  

TEKNE case study “Agile process and Electric/Electronic Architecture of a vehicle for professional 
applications” develops a cloud-enabled Prognostics and Health Management System (PHM). PHM 
functions deal with control, anomalies detection and classification, diagnostics, prognostics, and 
maintenance of the on-board power electronics of electric vehicles. The case study considers a traction 
inverter.   

The case study deals with three aspects among those that TEK considers prominent for improving its 
industrial development process: design-time support to the modelling and to the models verification; 
automation of the run-time test preparation, execution, and results interpretation; AI/ML technologies 
and components.  

Each of the above aspects is covered by a use case scenario, as summarised in Table 9.1. 

Table 9.1 Synopsis of the case study TEK_CS08 

Use case scenario TEK_UCS_01 — Design choices verification 

 Description: Design space exploration and verification of the models. Verification in a semi-
automatic manner, at design time, with respect to the requirements, of the 
adequacy (the response versus the resources) of the real components on-
which/with-which the system architect has in mind to map/realise the 
architecture.  

Requirements: TEK_R_102, TEK_R_103, TEK_R_104 

Tools: HEPSYCODE (UNIVAQ), S3D (UCAN) 

KPI: TEK_UCS_01_KPI_1.2_1 

Use case scenario TEK_UCS_02 — Run-time verification 

 Description: Automatic execution of unit tests. 

Requirements: TEK_R_202, TEK_Data_02. 

Tools: devmate (AST). 

 KPI: TEK_UCS_02_KPI_3.1_1 

Use case scenario TEK_UCS_03 — Operating life monitoring 

 Description: Evaluation, in a semi-automatic manner, of the state of health of the system, 
interpreted on the basis of the data produced by the system. 

 Requirements: TEK_R_104, TEK_R_201, TEK_R_203 

 Tools: ConvHandler, Bridger, and DataAggregator (ROTECH) 

 KPI: TEK_UCS_03_KPI_3.1_1 

Globally, the case study develops a demonstrator whose development uses AIDOaRt solutions, tools 
and components, provided by UNICAN, UNIVAQ, AST and ROTECH. Figure 9.1 depicts the block diagram 
of the demonstrator and where the solutions are utilised.  
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Figure 9.1 TEK demonstrator 

The system, on one side, has near real-time diagnostics/prognostics capabilities, provided by a 
vehicular computing platform. On the other side, there is a cloud deployed computing platform. This 
stores data collected from a fleet of vehicles and runs complex AI algorithms, whose results can also 
be used for AI models validation and updating.  

The inverter works in a simulated operation environment (battery, motor, mechanical load). Data 
(voltages, currents, and temperatures) are collected by sensors and acquisition boards. The 
ConvHandler component is in charge of data cleaning before the processing that is carried out by the 
Compact PHM Processing component. This is said to be “compact” because its AI methods run on a 
computing unit with limited capability. The local and remote Bridger components transfer data to the 
cloud deployed platform. Here, there are enough resources available to the PHM Processing 
component in order to run a PHM system with full capabilities. The DataAggregator component is in 
charge of monitoring the system for detecting and classifying defects during the operating life and for 
better performance.  

9.1. Use case scenario TEK_UCS_01 — Design choices verification 

The scenario TEK_UCS_01 “Design choices verification” deals with the verification of the models and 
with the design space exploration. The goal is to verify the adequacy (the functional aspects, as well as 
the response versus the resources) of the target components that the system architect has in mind to 
map/realise the design of the system. The development tools used in the use case are SD3 of UNICAN 
and HEPSYCODE of UNIVAQ.  

HEPSYCODE (https://www.hepsycode.com/) is a hardware/software co-design methodology and 

framework designed for the development and co-simulation of heterogeneous multi-many-core 

embedded systems. The executable rendezvous system specification model is created in SystemC, 

https://www.hepsycode.com/
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starting from a Graphical User Interface (GUI) where model-driven engineering aspects, trace, and 

model analysis capabilities are realised using the Eclipse project. The model-to-text transformation, 

followed by automatic SystemC translation, incorporates co-simulation features and functions that 

verify input constraints and requirements coverage. 

Intermediate design space exploration enables the evaluation of multiple alternative solutions rapidly, 

employing Artificial Intelligence/Machine Learning algorithms such as evolutionary algorithms, Deep 

Neural Networks (DNN), regression trees, and random forests. Pareto analysis is applied to reduce the 

solution space and identify suboptimal implementations that meet input requirements (including 

timing performance, energy consumption, manufacturing, and implementation costs). Co-simulation 

activities are utilised to perform a final check for requirement satisfaction and recommend solution(s) 

suitable for the selected embedded application. 

S3D (https://s3d.unican.es/) is a model-driven system design framework around a single UML/MARTE 

model. The model is used as a centralised repository of all the information about the system which is 

relevant for the design. From the model, the specific information required to perform a certain 

simulation and performance analysis task (e.g. performance simulation of a solution in a design-space 

exploration) is extracted and the corresponding simulation model, synthesised. This Model-to-Model 

generation is performed by the mSSYN tool. The M2M technology used to generate the simulation 

models automatically from the system model can be extended to synthesise the SW stack to be 

executed in each computational node. The corresponding synthesis tool is eSSYN 

(https://essyn.unican.es/). 

The fundamental S3D modelling methodology is based on required-provided services and is able to 

support a publish-subscribe communication middleware. Model-Driven Design (MDD) is proposed for 

modelling, simulation and performance analysis of SW intensive robot-based services. Robots, as well 

as embedded systems in general can be integrated into a system engineering framework without 

affecting their modelling, design and development features. In order to seamlessly integrate additional 

kinds of electro-mechanical components, a platform-based approach is proposed.  

SoSIM is a System-of-Systems Simulation tool. From the Single-Source System Design (S3D) model, the 

specific information required to perform simulation and performance analysis tasks is extracted and 

the corresponding simulation model is synthesised. 

There are two AI technologies being implemented as SoSIM modules. The first, will infer performance 

and energy predictions on a target processor taking as inputs concrete performance indicators 

obtained from the execution of the code in the host. Training a neural network with data from both, 

the host and the target platforms, and using the host HW performance registers to take the run time 

figures of merit in the host, the tool will be able to exploit the capacity of a modern GPU (Graphics 

Processing Unit) to bring into the simulation environment on-line data of the actual performance of 

the code in the target. This technique will enable the simulation of code subject to much more complex 

structures than the basic flat uninterrupted block of code. The second, will use AI to statically predict 

from the target binary (RISC-V) its performance figures (time and energy) when executed. 

https://s3d.unican.es/
https://essyn.unican.es/
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The key idea of this approach is to execute a program on an intel x86 based machine while logging its 

intel’s hardware performance counters with the exa-PAPI library. Then, feed that counted events into 

a Machine Learning model and predict the time and energy consumption that that same code would 

have when executed on another different architecture platform. 

9.1.1. Summary of preliminary results 

S3D — During the period covered by this deliverable, we have worked trying to replicate as close as 

possible the accuracy shown for this technique in Gerstlauer et al. paper [12]. We have worked in 

contact with Gerstlauer’s team to verify our technique and analyse our findings. So far we have 

achieved a precision lower than the one achieved by them but still it is quite competitive when applied 

in the simulation context we are exploring.  

We have characterised the nature of our benchmarks to compare ours against [13]. In addition, we 

have defined and calculated some metrics for the theoretical predictability of our generated dataset. 

At this point we are defining the theoretical limits for the actual accuracy of the technique in the 

presence of actual data (subject to various noise sources).  

We are now using a more robust evaluation dataset and methodology and have solved some problems 

with our k-fold evaluation phase, which was giving us misleading readings. All in all our current 

technique yields good improvements over our previous results.  

HEPSYCODE — Over the past months, UNIVAQ focus has been on refining the UC models by 

incorporating behavioural computation aligned with the TEKNE code and data model into the process 

network, as illustrated in Figure 9.2. Subsequently, UNIVAQ evaluated metrics for Design Space 

Exploration (DSE), such as workload, energy consumption, and manufacturing cost. These metrics were 

utilised in the AI search algorithm, specifically evolutionary algorithms, to identify sub-optimal 

architectural partitioning and mapping solutions. 

Co-simulations were utilised to validate requirements fulfilment based on the specified metrics. 

Furthermore, we will conduct thorough analysis and evaluation to assess the reduction in design time. 

Machine Learning algorithms will also be applied to optimise DSE time, thereby increasing the number 

of feasible solutions found and identifying implementation alternatives not previously identified by the 

designers. 
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Figure 9.2 TEK System Specification Model using HEPSYCODE Framework 

9.1.2. Evaluation of results considering requirements coverage 

The following requirements will be evaluated in the use case scenario TEK_UCS_01:  

● TEK_R_102: The AIDOaRt Framework verifies in a semi-automatic manner, at design time, with 

respect to the requirements, the adequacy (the response versus the resources) of the real 

components on-which/with-which the system architect has in mind to map/realise the 

architecture. 

● TEK_R_103: The AIDOaRt Framework synthesises in a semi-automatic manner the models needed 

for the verification at design time (the models that define both the tests and the results, i.e. the 

pass/fail criteria). 

● TEK_R_104: The AIDOaRt Framework interprets in a semi-automatic manner the results of the 

design time verification.   

HEPSYCODE 

Initial solutions were identified concerning workload, energy, and cost. The results demonstrate a 

simultaneous improvement in solution response time analysis and a greater reduction in design time, 

as depicted in Figure 9.3 (a), (b) and (c).  
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(a) HEPSYCODE Pareto Front size compared to 

designer’s evaluated solutions 

 

(b) HEPSYCODE Design Time reduction w.r.t 

classical approach 

 

(c) HEPSYCODE design space size increase and 

design time decrease (in %) 

   

(d) HEPSYCODE Pareto Frontier alternative 

solutions for TEKNE use case 

 

Figure 9.3 TEK System Specification Model using HEPSYCODE Framework 

The analysis was conducted based on pairs of metrics, with the complete Pareto front results 

presented in Figure 9.3 (d). UNIVAQ was able to analyse a larger number of solutions than a traditional 

approach, while discovering a higher number of feasible solutions through rapid co-simulation 

methods.  

UNIVAQ was able to analyse a larger number of solutions than a traditional approach, while discovering 

a higher number of feasible solutions through rapid co-simulation methods. 
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HEPSYCODE evaluated the following requirements:  

● TEK_R_102: This requirement was met by employing the Design Space Exploration (DSE) approach 

using AI/ML algorithms. Further results and scenarios will be analysed and implemented to refine 

the final selected architecture. 

● TEK_R_103: This requirement was satisfied using the model-driven Eclipse-based tool and 

framework. Further improvements will be introduced through collaboration with other solution 

providers (e.g., S3D and SoSIM, or process mining from JKU). 

● TEK_R_104: This requirement is partially addressed as UNIVAQ aims to enhance simulation and 

solution search algorithms to enhance the accuracy of the proposed results while reducing design 

time. 

S3D 

In terms of simulation performance and latency, our proposed technology is in line with specifications 

and our results meet our initial requirements. 

As an initial evaluation experiment we have used an 80% portion of the MiBench dataset to train our 

model architecture and the other 20% for doing the evaluation of the prediction accuracy. So far these 

very preliminary results have been promising (around 4% MAPE). This prediction accuracy is good 

enough, in the context of the simulation technologies in which it might be exploited [13].  

At this point, all software integration details are solved. We have already tested our code on a simple 

flight management system as well as in TEKNE's use case scenario. It has been tested with previous 

models that led to not quite good precision.  

9.1.3. Evaluation of results considering KPIs 

TEK_UCS_01_KPI_1.2_1 

Table 9.2 Case study KPI “TEK_UCS_01_KPI_1.2_1” 

KPI Identifier: TEK_UCS_01_KPI_1.2_1 Scenario Identifier: TEK_UCS_01 

KPI 

Description: 

Optimise verification time in the design phase.  

Refined 

AIDOaRt KPI: 

Description: Improvement of the time required for identification of design 

problems thanks to the analysis of the collected data. (‡) 

Identifier: KPI_1.1 (‡) Target ≥ 25 % 

KPI Measure: k = t_r/t_n, the ratio between the time t_r to verify, using the tool, r selected 

models, and the time t_n to verify the total number n of models within the design 

space. Designers select these r models based on their experience and the 

indication of the tool.  

KPI Baseline: Source: Project management dashboards, interviews with technicians.   
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Value: k0 = 0 % (no automation) 

Target: Increase: k ≥ 25 % 

(‡) In the previous deliverable D5.6 “Use Case Development Report – 1” [9], the scenario TEK_UCS_01 

was declared to address the project KPI_1.2 “Improvement of the early detection of system 

deviations”. Now, the project KPI is KPI_1.1 “Improvement of the time required for identification of 

design problems thanks to the analysis of the collected data”. The reason for this change is to better 

adhere to the activities carried out and the tools used in the scenario that considers performance 

analysis and design space exploration more than model verification.  

Tools are still in development, so the KPI will be measured afterwards.  

9.2. Use case scenario TEK_UCS_02 — Run-time verification 

The scenario TEK_UCS_02 “Run-time verification” is related to software testing. TEK searches for a 

solution that, in a semi-automatic way, is capable of defining and executing the tests, as well as 

interpreting the tests results. 

TEK use case scenario requires automatic generation of test code. The AST tool, devmate, uses 

technologies for equivalence-based testing, to produce a test model from which we can generate test 

code. Other features of devmate include the user interface to handle the input and output definition 

of the functions under test, a compatible parser, a plugin architecture for a suitable IDE and data 

handling of equivalence classes and test data, necessary for the proper fulfilment of the requirements. 

To satisfy TEK use case scenario, the tool devmate of AST needed support for the C language. Hence, 

AST’s first tasks were to develop a parser for the C language and to adapt the user interface for C 

specific features. A code generator was developed that produces test code in C++, executable with 

GoogleTest.  

The different modules are part of devmate, currently delivered in the form of an IDE plugin. As several 

difficulties arose from Eclipse IDE, a standalone version was developed to avoid these problems. 

The tool devmate can be used in two ways:  

● It can be used to define test data and expected output based on the requirements of the user and 

therefore the generated code is an automated code for the validation of the implemented function 

under test (check if the function works as intended). 

● The generated test code can further be used in case of refactoring for the verification of the 

function under test (after refactoring the function works in the same way furthermore). 

9.2.1. Summary of preliminary results 

TEKNE reviewed the prototype for automatic unit test case and for test code generation for C. Also on 

the basis of the feedback (e.g. about test management features, complex test data, editor user 



   

 

  Page 139 

 

AIDOaRt Project nr. 101007350   

interface, some problems in C-parser), AST decided to make a redesign of the architecture and user 

interface to improve usability and create a enhanced basis for planned features. 

Advantages of the new features: 

● complete new features to manage tests and complex structures of tests in a visual canvased based 
user interface;  

● fuzzy search features for easier finding tests and data;  
● possibility to define test cases in a more intuitive and easier way in the test editor also based on 

visual canvased oriented user interface;  
● enhancement of method and function test definition by also integration test definition features;  
● optimisation of parser for C code;  
● enhancement of parser for C++ code;  
● easier handling of test cases and test data for the user.  

9.2.2. Evaluation of results considering requirements coverage 

The following requirements will be evaluated in the use case scenario TEK_UCS_02:  

● TEK_R_202: The AIDOaRt Framework synthesises, in a semi-automatic manner, the models needed 

for the verification at run time (the models that define the tests and the tests results).  

● TEK_Data_02: Monitoring data of test execution and processing of results. 

More work and research is necessary to bring it to the expected level: devmate as a standalone tool 

that fulfils the requirements TEK_R_202 and TEK_Data_02 in the form of more automation.  

9.2.3. Evaluation of results considering KPIs 

TEK_UCS_02_KPI_3.1_1 

Table 9.3 Case study KPI “TEK_UCS_02_KPI_3.1_1” 

KPI Identifier: TEK_UCS_02_KPI_3.1_1 Scenario Identifier: TEK_UCS_02 

KPI 

Description: 

Reduction of testing effort. 

Refined 

AIDOaRt KPI: 

Description: Increase in the percentage of the automated parts of the processes 

which are currently manual (e.g. predictive maintenance, 

generation of test cases). 

Identifier: KPI_3.1 Target ≥ 30% 

KPI Measure: k = number of module tests that are automated, as percentage of the total. 

KPI Baseline: Source: Project management dashboards and interviews with expert 

technicians.  

Value: k0 = 0 % (no automation) 

Target: Increase: k ≥ 30% 
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Currently the prototype of the new model and user interface is planned to be evaluated within the 

hackathon meeting in Dec. 2023 in Linz. At the moment no KPIs are systematically measured regarding 

the prototype state and the big changes carried out. So it is planned to gather some first usage metrics 

in this evaluation within the hackathon.  

9.3. Use case scenario TEK_UCS3 — Operating life monitoring 

In the scenario TEK_UCS_03 “Operating life monitoring”, the demonstrator operates and provides its 
services in an environment partly simulated. Measured data are collected and pre-processed (cleaning, 
filtering, features extraction) to obtain “monitoring data”. These are processed by the compact on-
board PHM processing. Moreover, they are transferred to the remote computing and data storage 
whose resources are available to run a full capabilities PHM system. 

9.3.1. Summary of preliminary results 

In this scenario, ROTECH is developing 3 solutions that provide different capabilities, useful to achieve 
the requirements identified by TEKNE. 

Bridger — The solution provides the communication between the On-board Platform and the Remote 
Platform. It introduces the features of secure communication using an encryption and decryption 
algorithm. There are two instances:  

● The On-board Bridger, which is integrated in the On-Board Platform and receives the data to be 
encrypted and published via MQTT (Message Queuing Telemetry Transport)).  

● The Remote Bridger, which is integrated in the Cloud Platform and subscribes to the topic where 
the data is published by the On-Board Bridger, performs decryption and stores the data in a 
database.  

ConvHandler — The solution performs filtering and cleaning of the data to be fed to the Bridger in the 
On-board Platform specific to the scenario.  

Data Aggregator — DataAggregator monitors and analyses the performance of the system, in order to 
support decisions about maintenance (corrections and improvements). Consistent evolution and the 
usability of the data play a key role too, by increasing the percentage of the automated parts of the 
processes which are currently manual (e.g. predictive maintenance, generation of test cases). 

DataAggregator manages four configurations:  

● In-comm aggregation: use of a multi-hop system for the process of gathering and routing tests 
information inside the Data Aggregator.  

● Tree-based approach: use of an aggregation tree, mapping and putting the data from leaves to 
root (source and sink nodes respectively).  

● Cluster-based approach: used to collect large amounts of data across the entire Platform.  
● Multi-path approach: use of partially aggregated data sent to the root or parent internal table 

which then can send the data along various paths.  
● Enhancement of method and function test definition by also integrating test definition features.  
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For the ConvHandler and the Bridger, tests have been conducted in a simulation environment to assess 
the correct operation of the tools and their deployment in an environment similar to the one used in 
the Scenario. Both solutions’ functionalities are reported in the deliverable D2.3 [5]. 

The solutions are working as intended and in the last period we focused on improving the latency of 
the Bridger to reduce the time to exchange the information received from sensors. In particular we 
introduced a compression algorithm to reduce the size of the exchanged data, reducing the time spent 
during the transmission. So far we have performed tests using two CSV (Comma Separated Values) 
files of different sizes provided by TEKNE. The files contain data samples similar to the data produced 
by the real environment. The first file is named Sb.csv and it is around 5 MB in size and the second file 
is named FFT.csv with a size of around 89 MB. 

The following tables represent the average of 10 test executions with the time in seconds for each 
phase of the Bridger.  

Table 9.4 - Average time (seconds) of test execution on Sb.csv (4.62 MB)  

Operation Bridger On-Board Bridger Remote 

File read 0,1314 n/a 

Compression 0,0953 n/a 

Decompression n/a 0,0256 

Encryption 0,0068 n/a 

Decryption n/a 0,0052 

Data transfer 1,7037 n/a 

 

Table 9.5 - Average time (seconds) of test execution on FFT.csv (88.5 MB) 

Operation Bridger On-Board Bridger Remote 

File read 2,8528 n/a 

Compression 2,8828 n/a 

Decompression n/a 0,9949 

Encryption 0,1616 n/a 

Decryption n/a 0,1157 

Data transfer 22,8978 n/a 

9.3.2. Evaluation of results considering requirements coverage 

The following requirements will be evaluated in the use case scenario TEK_UCS_03:  

● TEK_R_104: The AIDOaRt Framework interprets in a semi-automatic manner the results of the 

design time verification.  

● TEK_R_201: The AIDOaRt Framework verifies in a semi-automatic manner the implemented 

software artefact (system, sub-system, component) with respect to the requirements as well as 

with respects to the architectural and detailed models.  
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● TEK_R_203: The AIDOaRt Framework interprets, in a semi-automatic manner, the results of the 

runtime verification.  

DataAggregator parses in a semi-automatic manner the results of the scenario tests and provides the 

results to the AIDOaRt Framework runtime verification.  

9.3.3. Evaluation of results considering KPIs 

TEK_UCS_03_KPI_3.1_1 

Table 9.6 Case study KPI “TEK_UCS_03_KPI_3.1_1” 

KPI Identifier: TEK_UCS_03_KPI_3.1_1 Scenario Identifier: TEK_UCS_03 

KPI 

Description: 

Improvement of capability of detecting and classifying defects during the operating 

life. 

Refined 

AIDOaRt KPI: 

Description: Increase in the percentage of the automated parts of the processes 

which are currently manual (e.g. predictive maintenance, generation 

of test cases). 

Identifier: KPI_3.1 Target ≥ 30% 

KPI Measure: k = number of automated tests, as percentage of the total. 

KPI Baseline: Source: Project management dashboards and interviews with expert 

technicians.  

Value: k0 = 0 % (no automation) 

Target: Increase: k ≥ 30% 

The KPI can be measured on the final, running version of the demonstrator.  

9.4. Planned improvements 

TEK_UCS_01 (S3D) 

We are still trying to solve the limitations of our technology to get our accuracy as close as possible to 

what [12] claims as possible: in our case, the way of doing the data gathering and the calculations in 

real time are different, so it is not correct to compare the results directly. So, even if prediction 

accuracy is good enough compared to the simulation technologies with which we compete [13], we 

still plan to work on enhancing our model to improve our accuracy, in particular we plan to use PAPI 

library multiplexing to refine the counters we use.  

TEK_UCS_02 (devmate) 

Support for the C language proved to be difficult, mostly because of pointer mechanics. As such 

development of the parser focuses on features required by the use case. Similarly test code generation 

in C++ provided challenges in memory allocation and type handling. 
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Adapting the user interface to and integrating GoogleTest in the Eclipse plugin architecture caused 

several problems so the decision was to refactor the whole devmate tool which requires a new internal 

model and a complete new user interface (which will be called Vizitest). This is currently under 

development. 

More work and research is necessary to bring it to the expected level: devmate/Vizites as a standalone 

tool will fulfil the requirements TEK_R_202 and TEK_Data_02 in the form of more automation.  

TEK_UCS_03 (ConvHandler, Bridger, DataAggregator) 

The main improvements that we are planning to do are related to the data transfer time of the Bridger 

to further reduce its latency and increase its performance. In particular, we are considering the idea of 

changing the encryption algorithm and using the MQTTS (TLS v1.4) to encrypt the data sent and 

received by both the Bridger On-board and Remote.  

For the Data Aggregator, we are working on the data collection in order to optimise the scenario test 

execution.  

9.5. Planned demonstration 

For the use cases TEK_UCS_01 and TEK_UCS_02, which are relevant to the design and test, we plan to 

show (live and video) some significant steps that illustrate the usage of UNICAN and UNIVAQ tools for 

design space exploration and performance evaluation, as well as of AST tool for test automation.  

For the use case TEK_UCS_03 we plan a video with the final demonstrator working in a simulated 

operating environment.  

The demonstrations will show a summary of KPIs measurement and requirements verification.  
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10. VCE_CS09 case study “Data modelling to support 
product development cost and efficiency” 

10.1. Case Study description 

The VCE case study revolves around the transformation of system design activities towards model-

based approaches. In particular, VCE develops product lines of Construction machines for various 

purposes and a wide range of contexts. In the AIDOaRt project architecture descriptions of a Dumper 

machine (currently formulated in documents and office tools) are used as a motivating example of the 

case study. Overall the use case has the goal of improving efficiency and introducing automation in the 

current primarily manual workflow of the system architecture description. A more thorough 

description of the use case can be found in deliverable D5.6 [9].  

During the active work in AIDOaRt, a set of challenges are observed to be the main inhibitors of the 

successful application of partners solutions: 

CH1: Heavy reliance on legacy tools and artefacts. In order for a solution developed in AIDOaRt to be 

successfully implemented it needs to be integrated and supported by surrounding legacy (e.g. Excel 

and Visio) 

CH2: Uncertainty in design. The considered stage considers the architecture phase of development, 

and as such information might be missing from the overall context.  

CH3: Tooling interoperability. Interoperability is often considered a weakness of model-based 

practices, and in the VCE use case it is necessary with interoperability not only between various 

modelling tools but also non-modeling tools (for example for simulation or legacy tools).  

CH4: Non-modelling target audience. Although the use case primarily focuses on the introduction of 

modelling into the current workflow, the target users are mostly non-modellers. As such, the solution 

needs to be user friendly and support user adoption.  

Currently, the work in AIDOaRt considers a collaboration of VCE with the partners: UNIVAQ, JKU, IMTA, 

DT, MDU, and AVL. The collaboration is focused on the development of a unified solution framework 

to address the concerns raised in the case study, where the different solutions are integrated with one 

another. The collaboration on the case study and the different use case scenarios is summarised in 

Table 10.1. 

Table 10.1 Synopsis of the case study VCE 
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Use case scenario VCE_UCS_01 — Modeling system, software, data architectures 

 Description: VCE together with the solution providers are developing a toolchain which aims 
to enable the modelling of VCE systems along with added capabilities of AI and 
DevOps. 

Requirements: ● VCE_R05 - Customise standards based modelling frameworks (e.g. UAF, 
SysML, UML) and metamodels to develop system, software, data 
architecture models 

● VCE_R07 - Development of standard data classification, reusable definition, 
representation, usage 

Tools: ● MORGAN (UNIVAQ),  

● ATL (IMTA),  

● EMF Views (IMTA),  

● Modelio (Soft), 

● AutomationML Modeling (JKU),  

● Modelling process mining tool (JKU) 

KPI: ● VCE_UCS_1_KPI_1.1_1,  

● VCE_UCS_1_KPI_2.2_1,  

● VCE_UCS_1_KPI_3.1_1 

Use case scenario VCE_UCS_02 — Validation and verification of architecture models 

 Description: VCE with the solution providers aims to introduce capabilities of validation and 
verification of the models developed through the overarching collaboration. In 
particular the use of co-simulation is envisioned to be a suitable solution with 
DevOps support. 

Requirements: ● VCE_R01 – Use automated reasoning and ML techniques for verification of 
specifications and high-level models 

● VCE_R04 – Use of automated tools for compliance verification 

● VCE_DR_01 – The models should include domain specific information in a 
standardised format 

● VCE_DR_02 – Tool should be able to extract the essential information and 
create documentation 

Tools: ● Keptn (DT) 

● MOMoT (JKU) 

KPI: ● VCE_UCS_2_KPI_1.2_1 

● VCE_UCS_2_KPI_3.1_1 
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Use case scenario VCE_UCS_01 — Modeling system, software, data architectures 

Use case scenario VCE_UCS_03 — AI augmented DevOps workflow and data analytics 

 Description: VCE with solution providers aim to further support the overall solution with 
analytical capabilities through AI integrated via DevOps flows. 

Requirements: ● VCE_R02 – AI/ML method for auto-adjusting model parameters w.r.t. 
similarity of execution traces of a Digital Twin with a CPS 

● VCE_R03 – Use ML for predicting values which are actually not measurable 

● VCE_R06 – Integration of DevOps workflows and continuous 
integration/configuration of models and corresponding technical solutions 

● VCE_R07 – Development of standard data classification, reusable 
definition, representation, usage 

● VCE_DR_02 – Tool should be able to extract the essential information and 
create documentation 

Tools: ● Keptn (DT) 

KPI: ● VCE_UCS_3_KPI_3.1_1 

● VCE_UCS_3_KPI_3.2_1 

 
Although the collaborations with partners are performed towards different use case scenarios the 
overall collaboration can be considered to be unified. Joint weekly meetings in addition to other 
more sporadic activities are performed with all of the aforementioned partners, and the use case 
scenarios are more or less worked towards in the same solution framework, highlighted below in 
figures 10.1 and 10.2. 
 
Figure 10.1 depicts a solution architecture that integrates existing partners' solutions, together 
referred as AIDOaRt toolset, and external components as open-source tools, and newly 
developed/under development components, like model transformations, to cope with specific 
automation and integration needs of the VCE case study, and possibly, part of the AVL case study 
(Simulink’s based simulation). 
Figure 10.2 depicts the engineering workflow supported by the proposed solution architecture in an 
activity-like diagram. The components' ids in Figure 10.1 are used to identify the corresponding 
supported engineering action in Figure 10.2, and macro-actvities depicted as swimlanes i.e., SysML 
modeling, AutomationML modeling, and modeling recommendations. 
Currently, the proposed architecture and workflow is semi-automated. Domain experts are expected 
to perform modeling and continuos delivery activities through different tools (Papyrus UML, CAEX 
Modeling Workbench, Keptn). 
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Figure 10.1 Overall view of the solution architecture in the VCE use case. 

 

Figure 10.2 The usage of the proposed architecture solution depicted in Figure 10.1 
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10.2. Use case scenario VCE_UCS_01 — Modelling system, software, 
data architectures 

This use case scenario regards the creation of modelling guidelines and patterns for architectures of 

VCE systems. Overall the use case scenario is the main one for the VCE case study, and most of the 

work in the collaborative efforts are related in some way to the scenario, or uses the implementation 

results as an input. The scope of the use case scenario is the transformation of non-formal artefacts 

(such as Excel and Visio) to model-based representations in standard languages (like SysML and 

AutomationML). Legacy descriptions are used as input for the work on the scenario, where the aim is 

to create corresponding representations in model-based approaches, while supporting legacy 

artefacts. Furthermore, the solution should enable the integration of AI and DevOps in a seamless 

fashion with added capabilities to demonstrate the value of model-based in comparison to legacy way 

of working. 

10.2.1. Summary of preliminary results 

To support modelling recommendations, UNIVAQ provides MORGAN, a modelling recommender 

system based on graph kernels. Using a predefined knowledge base, the tool can suggest relevant 

artefacts similar to the ones already in place, thus reducing the possible choices and the whole design 

time. To this end, we combined MORGAN with the MER component provided by JKU to collect the 

modeller’s behaviour in terms of actions, i.e., creating, renaming, and deleting model elements.  

The preliminary results of the hackathon show that MORGAN is capable of providing model operations 

even though the tool has been fed with random models. In future iterations, we plan to validate 

MORGAN using real data provided by VCE engineers. Furthermore, we will integrate all the capabilities 

offered by MORGAN and MER in an Eclipse plugin, thus supporting Syrius-based editors with modelling 

recommendations.  

To support multiview modelling, IMTA provides EMF Views, an approach and corresponding 

Eclipse/EMF-based tool for specifying and building views over one or several models that potentially 

conform to different metamodels. In the present VCE context, multiview modelling is considered as an 

engineering activity independent from SysML and AutomationML modelling, so it can be also applied 

to federate any EMF-based models involved in the CPS engineering process. 

The preliminary results of the last hackathons show that EMF Views can be used in practice to 

federate/interrelate SysML, AutomationML and FMU models into integrated views that VCE engineers 

can then navigate and query depending on their needs. This way, they can more easily get an overall 

vision of the system under study and take design decisions accordingly without referring anymore to 

legacy data from Excel sheets. 

AutomationML modelling is enabled by the JKU CaeX workbench which is integrated in Eclipse. In the 

defined framework AutomationML modelling is added as a potential modelling language in 
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conjunction with SysML for the engineers. Apart from AutomationML, JKU also provides a model 

process mining tool which records the events of a modeller when using the Eclipse platform. In this 

way, data can be gathered on the traces of modellers when using the solution framework presented 

earlier. 

The preliminary results show that both AutomationML and Modelling process mining can be integrated 

into the overall framework. Particularly, the process mining is able to generate data traces which can 

be used for the modelling recommendations, while the AutomationML models are possible to 

integrate with SysML models using various model transformations.  

 

10.2.2. Evaluation of results considering requirements coverage 

The requirements that are applicable for this Use Case are VCE_R05 and VCE_R07.  

 

● VCE_R05 - Customise standards based modelling frameworks (e.g. UAF, SysML, and UML) and 
metamodels to develop system, software, data architecture models 

● VCE_R07 - Development of standard data classification, reusable definition, representation, 
usage 

 

So far, both of these requirements are fulfilled as the Use Case relies on standard modelling languages 
(UML, SysML, AutomationML) and customise the notations to enable VCE concepts. Furthermore, in 
order to facilitate re-use of legacy artefacts and data patterns templates are created to facilitate 
automatic transformations across languages and artefacts.  

The modelling recommendations provided by MER+MORGAN have been evaluated by conducting an 

initial user study. In particular, we involved four different types of engineers from VCE, i.e. Verification 

Engineer, Software Engineer, System Architect, and System Engineer. Each session took roughly 1.5 

hours and we collected their feedback in a structured questionnaire. Overall, the participants are 

satisfied with the examined aspects even though a deeper evaluation is needed. We plan to extend 

the evaluation by (1) collecting additional modelling traces and (2) involving more participants from 

VCE.  

The multiview modelling support provided by EMF Views has been evaluated by considering only a 

limited set of models at this stage. In particular, we have been able to experiment on the specification 

and building of an initial “complete” view interconnecting SysML, AutomationML models (as design 

models) and more recently a FMU model (as a runtime model). This already showed promising results 

in terms of model federation capabilities within the VCE context.  

In the coming year, we plan to extend the evaluation by( 1) considering various sets of (possibly large) 

models of the same kind as inputs to the view, (2) integrating other languages/metamodels to be also 

federated within the same view or via complementary views, and (3) combining EMF Views with ML 

techniques in order to (semi-)automate the generation of the views.  
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For the end of the project, we envision to provide a demonstration, based on VCE models, to display 

the final results of our work on the previously discussed extensions (possibly reaching different levels 

of achievements depending on the needs of VCE and the underlying complexity). 

The use of AutomationML has been integrated with the legacy concepts of VCE workflows, and so far 

captures the necessary concepts in a clear and understandable modelling pattern. In this regard it can 

in the future be extended to capture information needed for more advanced analysis capabilities or 

variability management. 

The modelling process mining tool has been able to capture the basic elements of user operations and 

been able to accurately store the data for AI algorithm training. In this regard the tool acts as a baseline 

technology to record the events of modellers (expert or beginners) so that it can be analysed for 

further use.  

10.2.3. Evaluation of results considering KPIs 

VCE_UCS_1_KPI_1.1_1 

Table 10.2 Case study KPI “VCE_UCS_1_KPI_1.1_1” 

KPI Identifier: VCE_UCS_1_KPI_1.1_1 Scenario Identifier: VCE_UCS_01 

KPI Description: Increase in development velocity, utilising MDE. 

Refined 

AIDOaRt KPI: 

Description: Improvement of the time required for identification of design 
problems thanks to the analysis of the collected data. 

Identifier: KPI_1.1 Target  ≥ 25% 

KPI Measure: k = Hours spent on tasks. 

KPI Baseline: Source: Measurement from current tasks from project management 
tools. 

Value: k0 = Varies between tasks but measured in hours. Exact value is not 
decided as it depends on the scope of the final evaluation. 

Target: Decrease: 100·Δ/k0 = 100·(k0 – k)/k0  ≥ 10%  

We will measure this KPI by comparing the expected time for certain architecture definitions by the 

methods introduced by the solution providers. It is expected that there will be improvements in the 

time spent on tasks, in particular we will focus on the development of a physical system architecture.  

VCE_UCS_1_KPI_2.2_1 

Table 10.3 Case study KPI “VCE_UCS_1_KPI_2.2_1” 

KPI Identifier: VCE_UCS_1_KPI_2.2_1 Scenario Identifier: VCE_UCS_01 

KPI Description: Re-use of architectural models in future projects. 

Refined 

AIDOaRt KPI: 

Description: Increase in the number of available data sources to be actually 
managed and handled in existing engineering practices. 

Identifier: KPI_2.2 Target  ≥ 25% 
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KPI Identifier: VCE_UCS_1_KPI_2.2_1 Scenario Identifier: VCE_UCS_01 

KPI Measure: k = Number of re-used artefacts 

KPI Baseline: Source: Current artefacts at stage of development 

Value: k0 = 0 

Target: Increase: k  ≥ 25%  

Currently there is no re-use of artefacts created for architecture definitions. We expect that by the use 

of the technologies developed inside AIDOaRt we should be able to re-use a significant amount of 

artefacts previously defined. In this way, we are interested in evaluating how much of the information 

that is represented in non-formal descriptions can be re-used when creating model-based approaches, 

mostly in the form of excel tables.  

VCE_UCS_1_KPI_3.1_1 

Table 10.4 Case study KPI “VCE_UCS_1_KPI_3.1_1” 

KPI Identifier: VCE_UCS_1_KPI_3.1_1 Scenario Identifier: VCE_UCS_01 

KPI Description: Automation of modelling activities. 

Refined 

AIDOaRt KPI: 

Description: Increase in the percentage of the automated parts of the 
processes which are currently manual (e.g. predictive 
maintenance, generation of test cases). 

Identifier: KPI_3.1 Target  ≥ 30% 

KPI Measure: k = Reduction of time spent on activities by replacing activities with automated 
means 

KPI Baseline: Source: Measurement from current tasks from project management 
tools. 

Value: k0 = Varies between tasks but measured in hours. Exact value is not 
decided as it depends on the scope of the final evaluation. 

Target: Decrease: 100·Δ/k0 = 100·(k0 – k)/k0  ≥ 30%  

We assume that most tasks performed in the workflow are currently manual, therefore the aim is to 

replace a significant amount of the currently performed tasks with automated means. In particular, 

the created solution architecture should replace a percentage of the estimated time spent on creating 

physical system architectures with automated processes. This is expected to be performed via the use 

of model transformations and MDE technologies.  

10.3. Use case scenario VCE_UCS_02 — Validation and verification of 
architecture models 

The second use case scenario in the VCE case study regards the introduction of improved V&V in the 

architecture definition of systems. In particular, previously used methods and tools do not contain any 

semantic meaning nor formal use of any language or notation. In this regard, a goal of the project is 

the added capabilities in this regard from the use of a primarily model-based approach to system 
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description. Expected outcomes of this use case scenario is the introduction of simulation, consistency 

checks, and automation in the workflows of architecture creations. 

10.3.1. Summary of preliminary results 

The MOMoT tool has been investigated for the possibility of automatically generating system 

architecture layouts in SysML based system requirements and lists of available components. The 

MOMoT tool leverages a metamodel and graphs transformation approach to generate an output graph 

that can consist of different elements and connections. 

In the VCE case, the generated graphs correspond to Internal Block Diagrams in SysML, and can be 

translated from graph representation to a model. Based on the use case, a metamodel has been 

initially generated which can be used in conjunction with user constraints to generate viable 

architectures, seen below are some abstract examples in figures 10.3 and 10.4: 

 

Figure 10.3 Example 1 of a generated architecture graph 

 

Figure 10.4 Example 2 of a generated architecture graph 

The next steps would be to better reason about which generated architectures are more optimal, and 

improve the algorithms involved for finding a suitable architecture.  

10.3.2. Evaluation of results considering requirements coverage 

The requirements related to this use case scenario are: 

● VCE_R01 – Use automated reasoning and ML techniques for verification of specifications and 
high-level models 

● VCE_R04 – Use of automated tools for compliance verification 

● VCE_DR_01 – The models should include domain specific information in a standardised format 

● VCE_DR_02 – Tool should be able to extract the essential information and create documentation 

VCE_R01 is partially fulfilled and is being worked towards in continued effort. In particular, we are 
interested in employing automated reasoning to automatically generate system architectures as 
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SysML Internal Block Diagrams, and AI can be used to reason about which solutions are more or less 
optimal. VCE_R04 is currently not fulfilled, and needs to be addressed in further development.  

Both VCE_DR_01 and VCE_DR_02 are currently fulfilled by the solution architecture defined in Figure 
10.1.  

10.3.3. Evaluation of results considering KPIs 

VCE_UCS_2_KPI_1.2_1 

Table 10.5 Case study KPI “VCE_UCS_2_KPI_1.2_1” 

KPI Identifier: VCE_UCS_2_KPI_1.2_1 Scenario Identifier: VCE_UCS_02 

KPI Description: Inconsistency detection in models. 

Refined 

AIDOaRt KPI: 

Description: Improvement of the early detection of system deviations. 

Identifier: KPI_1.2 Target  ≥ 30% 

KPI Measure: k = Increasing coverage of inconsistency automatically 

KPI Baseline: Source: Current tools employed internally.  

Value: k0 = Number of inconsistency rules automatically identified.  

Target: Increase: k ≥ 10% 

There are many different types of artefacts containing information in the VCE development chain. 

Inside AIDOaRt we expect to improve the automatic inconsistency detection across various artefacts. 

The integrated solution framework should be able to detect inconsistencies across the various 

developed artefacts.  

VCE_UCS_2_KPI_3.1_1 

Table 10.6 Case study KPI “VCE_UCS_2_KPI_3.1_1” 

KPI Identifier: VCE_UCS_2_KPI_3.1_1 Scenario Identifier: VCE_UCS_02 

KPI Description: Automate V&V on architecture models. 

Refined 

AIDOaRt KPI: 

Description: Increase in the percentage of the automated parts of the 
processes which are currently manual (e.g. predictive 
maintenance, generation of test cases). 

Identifier: KPI_3.1 Target  ≥ 30% 

KPI Measure: k = Time spent on V&V activities on architecture models 

KPI Baseline: Source: Measurement from current tasks from project management 
tools. 

Value: k0 = Varies between tasks but measured in hours. 

Target: Decrease: 100·Δ/k0 = 100·(k0 – k)/k0  ≥ 30%  

We are expecting that part of the currently performed activities should be automated, in particular 

the simulations that can be performed at this stage. We expect that the solution framework should be 

able to utilise DevOps concepts to offload the engineers.  
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10.4. Use case scenario VCE_UCS_03 — AI augmented DevOps workflow 
and data analytics 

While the other use case scenarios primarily regard the use of modelling to improve the processes of 

development, the third use case scenario regards AI and DevOps. Indeed, by transforming the 

architecture descriptions and related information to a primarily model-based representation it is 

expected that AI and DevOps can be more readily applied. Therefore, the third use case scenario aims 

to augment the developed solutions in the first two use case scenarios to include the use of AI and 

DevOps to further improve the overall goal of reducing manual activities and leveraging the power of 

model-based approaches. 

 

10.4.1. Summary of preliminary results 

This use case scenario primarily uses the Keptn tool from DT. By linking SysML architecture models 

(e.g, from VCE_UCS_01) with simulation models following the FMI standard (FMUs), the Keptn tool is 

able to generate an automated pipeline for model execution and evaluation, independent of any 

particular tool. The overall approach is visualised in Figure 10.5: 

 
Figure 10.5 Overall architecture of the integrated Keptn pipeline in the Use Case Scenario 

A user inputs a model, some initial parameters, and evaluation target of one or more outputs. This 

information is fed to Keptn which initialises simulations by deploying a simulation environment in a 

docker container and performing the simulations until a valid result is obtained. In our case, we have 

utilised a thermal management system as a simulation model and observed the battery temperature 

during simulation, in order to find a suitable parameterization of the model. Figure 10.6 shows how 

the case is presented in AIDOaRt, where different variants are highlighted through simulation traces. 
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Figure 10.6 Thermal management system run as an FMU to generate simulation traces of variants 
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10.4.2. Evaluation of results considering requirements coverage 

The related requirements are: 

● VCE_R02 – AI/ML method for auto-adjusting model parameters w.r.t. similarity of execution 
traces of a Digital Twin with a CPS 

● VCE_R03 – Use ML for predicting values which are actually not measurable 

● VCE_R06 – Integration of DevOps workflows and continuous integration/configuration of 
models and corresponding technical solutions 

● VCE_R07 – Development of standard data classification, reusable definition, representation, 
usage 

● VCE_DR_02 – Tool should be able to extract the essential information and create documentation 

 

VCE_R02 is expected to be met further on with the added work towards the integrated DevOps 
pipeline. VCE_R03 is similarly expected to be integrated with the co-simulation solution. VCE_R06 is 
currently being fulfilled via the use of the continuous integration and delivery of simulation models.  

VCE_R07 is met as it is a precondition for many of the other aspects of the tool-chain. VCE_DR_02 is 
currently met as the simulation traces can be stored and published for the user along with other 
information regarding the model(s).  

10.4.3. Evaluation of results considering KPIs 

VCE_UCS_3_KPI_3.1_1 

Table 10.7 Case study KPI “VCE_UCS_3_KPI_3.1_1” 

KPI Identifier: VCE_UCS_3_KPI_3.1_1 Scenario Identifier: VCE_UCS_03 

KPI Description: Automate manual processes. 

Refined 

AIDOaRt KPI: 

Description: Increase in the percentage of the automated parts of the 
processes which are currently manual (e.g. predictive 
maintenance, generation of test cases). 

Identifier: KPI_3.1 Target  ≥ 30% 

KPI Measure: k = The amount of time spent on manual processes for tasks. 

KPI Baseline: Source: Measurement from current tasks from project management 
tools. 

Value: k0 = Varies between tasks but measured in hours. Exact value is not 
decided as it depends on the scope of the final evaluation. 

Target: Decrease: 100·Δ/k0 = 100·(k0 – k)/k0  ≥ 30%  

We would like to automate processes within AIDOaRt, and expect that expected time will be reduced 

for architecture modelling and definition via the use of integrated automated methods. This will be 

measured by extracting the time spent on commonly performed manual tasks in the engineering 

workflows and compare the same task effort when considering the AIDOaRt framework. While 

concrete tasks might differ depending on the actual case and considered artefacts, examples might 

include transferring data from one source to another, creation of certain architectural descriptions, 

documentation, etc.  
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VCE_UCS_3_KPI_3.2_1 

Table 10.8 Case study KPI “VCE_UCS_3_KPI_3.2_1” 

KPI Identifier: VCE_UCS_3_KPI_3.2_1 Scenario Identifier: VCE_UCS_03 

KPI Description: Improve coverage of data gathering. 

Refined 

AIDOaRt KPI: 

Description: Increase the coverage and quality of actionable feedback for the 
next DevOps iteration. 

Identifier: KPI_3.2 Target  ≥ 25% 

KPI Measure: k = Increase in the types of gathered data 

KPI Baseline: Source: Current data gathering from engineering activities. 

Value: k0 = Varies between activities. Exact value is not decided as it depends 
on the scope of the final evaluation. 

Target: Increase: 100·Δ/k0 = 100·(k – k0)/k0  ≥ 25%  

We expect that we can increase the amount of data that can be gathered and analysed at the 

architecture definition by the use of formal models that can be increasingly analysed and additionally 

be used for co-simulation. As such, we are expecting that the amount of available data at this stage 

should increase to make more advanced decision making. We expect to measure this by the amount 

of data that is generated in the automated processes considered in the AIDOaRt project compared to 

manual means over a given time (somewhere in the range of days.) 

10.5. Planned improvements 

The planned improvements in the VCE use case is expected to assist the work towards the commonly 

defined solution architecture. In particular, the following improvements are expected for the different 

solution components: 

● Improve quality of recommendations of the MORGAN tool via more fine grained training on 

real gathered engineering data. 

● Improvements in the visual layouts of the integrated solution architecture in Eclipse. 

● Improvements in the performance of the Keptn integration to reduce resources spent on 

orchestration of simulation 

● More structured standard views from EMF views which supports VCE engineer common 

problems. 

● A more robust integration of MOMoT for the FMI standard by the implementation of a 

metamodel that captures co-simulation information with FMI. 

● A more detailed and expanded data gathering from the process mining tool from JKU. 

Apart from the solution components, there are planned improvements in terms of direction of the 

collaboration from the feedback gathered from internal workshops. An increased focus on the use of 

DevOps is seen as beneficial, and live demos which can be extended to a more general solution.  
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10.6. Planned demonstration  

The planned demo at the end of the project is the commonly defined solution architecture being 

applied from start to finish in a realistic context. So far, each part has been demonstrated separately, 

but as a final product we aim for a holistic integration that can show how a user (in this case a VCE 

engineer) can be expected to use the framework for their needs. Additionally, we are aiming to make 

it possible for external users to apply the solution architecture by installation and user guidelines via 

publicly available sites (e.g. a public GitHub repository). We will utilise the same context that has been 

used so far, that is a Construction Machine, where we will highlight different parts of the system, such 

as the physical architecture for system modelling and the Thermal management system for simulation 

and analysis.  

The demo should as such showcase how a system architect can model physical architectures of 

construction machinery via the use of different modelling languages which can represent particular 

VCE concerns. Additionally, it should be possible to re-use existing legacy office descriptions via 

automatic reading. The user should be able to employ the various integrated solutions in a semi-

seamless fashion to define and model system architectures. In the modelling domain the usage of 

various tools should be applied for added benefits, and in particular increased automation. This 

includes for example model transformations, modelling recommendations, model generations, model 

simulation, and model management. For the simulation, we are expecting to highlight the use of 

heterogeneous simulation models being used together for a wider simulation, currently relying on 

integration based on the FMI standard. Technically, the creation and viability of FMI models are seen 

as out of scope for AIDOaRt, and instead the focus is on the usage, which we expect to utilise user-

friendly API’s. So far, this is expected to be done via cloud-based technologies that should hide the 

technical implementation for the end user (who is expected to be a systems engineer/architect 

without much simulation experience).  
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11. WESTMO_CS10 case study “Automated 
continuous decision making in testing of robust 
and industrial-grade network equipment” 

11.1. Case Study description 

 

The Westermo case study strives to increase the flow in the software development process of 

embedded systems (Figure 11.1), from humans designing and developing it (A), through the DevOps 

process with continuous integration and nightly testing (B,C,D,E), to the released system (F). Increasing 

the flow can mean many things, and in AIDOaRt the KPIs focus on reduction of effort needed for 

humans in functional and non-functional root cause investigations. Through the project, we achieve 

these goals by improving data collection (D) and introducing AI-based systems (G,J) that improve steps 

in the DevOps flow with monitoring, automation, and interpretation. 

 

Figure 11.1 Overview of the Westermo case study 

Main challenges encountered so far are on extracting and anonymizing data from Westermo, as well 

as collecting new types of data, at the pace initially planned. Also, evaluating and integrating 

solutions/tools into the Westermo context has come with challenges. 

The Westermo use case has four use case stories and four requirements, but since the mapping 

between requirements and use case stories is not one-to-one this use case discusses requirements 

coverage, and also KPIs after discussing the use case stories, i.e. in Sections 11.6 and 11.7. 

The Case Study Synopsis is in Table 11.1. 



   

 

  Page 160 

 

AIDOaRt Project nr. 101007350   

Table 11.1: Synopsis of the Westermo case study 

Use case scenario W_UCS_1 — AI-Augmented devops development process 

 Description: With the help of AIDOaRt solution providers, we strive to develop AI-extensions 
to the DevOps process such that suspicious links between code changes and 
test results are identified. This is developed in Python with standard AI tools 
like SciPy, NumPy, Pandas, and PyTorch in a containerized manner to support 
simple integration at Westermo.  

 

Another set of tools explore the test resource allocation and test selection 
processes. With RISE we are creating a model of the resource allocation, and 
ÅBO are exploring reactive test selection. 

Requirements: ● W_R_1 — AI/ML-powered monitoring/automation of DevOps process.  

● W_R_3 — Extract data from steps in the DevOps process. 

● W_R_4 — Log file storing, indexing, searching, clustering and comparing 

Tools: ● LogGrouper (RISE) 

● Bug-Inducing Commit (RISE) 

● Test resource allocation (RISE) 

● STGEM (ÅBO) 

● CRT (Copado) 

KPI: ● W_UCS_1_KPI_2.2_1  

Use case scenario W_UCS_2 — AI-powered root cause analysis w.r.t. functional issues 

 Description: With solution providers, we strive to develop an AI-extension to the DevOps 
process, e.g. such that suspicious links between code changes and test results 
are identified. These are mainly developed in Python with standard AI tools in 
a containerized manner to support simple integration at Westermo. 

Requirements: ● W_R_2 — Quality monitoring and predictions in devops process 

Tools: ● LogGrouper (RISE) 

● Bug-Inducing Commit (RISE) 

● STGEM (ÅBO) 

● CRT (Copado) 

KPI: ● W_UCS_2_KPI_1.2_1 

Use case scenario W_UCS_3 — AI-powered root cause analysis w.r.t. non-functional quality 

 Description: We wish to develop tools for monitoring quality shortcomings, performance 
degradation, etc. To start with, more data needs to be collected. In 
collaboration with RISE, we explored using an existing tool set with a positive 
preliminary result. This has not been investigated further. 

 

At AIDOaRt Hackathons, we have also used Copado Robotic Testing (CRT) to 
investigate correlations between test case verdict data. 

Requirements: ● W_R_2 — Quality monitoring and predictions in devops process 

Tools: ● Abandoned tool (RISE) 

● CRT (Copado) 
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KPI: ● W_UCS_3_KPI_1.2_1  

Use case scenario W_UCS_4 — AI-powered log analysis/root cause analysis 

 Description: We develop a tool for clustering log files that are similar. A proof-of-concept 
tool has been developed and is being integrated and evaluated. 

Requirements: ● W_R_4 — Log file storing, indexing, searching, clustering and comparing 

Tools: ● LogGrouper (RISE) 

● Bug-Inducing Commit (RISE) 

KPI: ● W_UCS_4_KPI_3.1_1 

 

11.2. W_UCS_1 — AI-Augmented DevOps development process 

W_UCS_1 aims to add AI to the DevOps development process in order to enhance it, and increase its 

flow (but there is some overlap between Westermo’s UCSs, in particular between W_UCS_1 and the 

following UCSs).  

For software testing, there may be dependencies between test cases, e.g. if test case N causes a 

problem for a later test case N+M, e.g. by not cleaning up a resource they both use. In AIDOaRt, we 

have identified that (a) such correlations exist and (b) we seem to be able to identify causality as well. 

Much of Westemo’s testing is done on physical hardware (and some on virtualized hardware). These 

test systems are a scarce resource. Currently, the test systems are manually allocated to the different 

software projects, but it would be desirable to introduce tool support. 

 

11.2.1. Summary of preliminary results 

Several tools link to W_UCS_1. In this report we discuss progress related to test case correlations, test 

resource scheduling as well as test case prioritisation. The work on LogGrouper and a tool for 

identifying bug-inducing commits are also related to W_UCS_1, but described under W_UCS_2. 

 
Test case correlations 
In several of the hackathons, we have explored relations between test cases, Figure 11.2 illustrates 

two ways of visualising relations: to the left we see a network of test cases with strong links, and to 

the right a matrix of all-to-all Pearson correlations. This has been explored by using tools from Copado 

and ÅBO. This knowledge will be relevant for the test selection described below, but was first 

investigated at a hackathon and considered an interesting finding in and of itself. 



   

 

  Page 162 

 

AIDOaRt Project nr. 101007350   

  

Figure 11.2 Two visualisations of relations between test cases. 

 
Test resource scheduling 
For one night in May 2023, Westermo had 12 active software branches being developed in parallel, 
and 30 test systems to use for testing. Most but not all branches were being tested in nightly testing, 
and most but not all test systems did some testing. The decisions to run testing of a certain branch 
on a certain test system are manual, and Figure 11.3 illustrates the user interface for doing this 
allocation (it has been anonymized, scaled and rotated to fit).   

 
Figure 11.3 Illustration of manual test system resource allocation. Two branches (rows) are not allocated to 

any test system, and three test systems (columns) are not used (perhaps because of maintenance). 

 
Intuitively, there seems to be potential for tool-support to improve the allocation process. With RISE 

we are exploring modelling of this process as a multi-objective optimization model whose solutions 

suggest the ‘best’ actions to be taken according to a given nightly testing resource allocation activity. 
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In particular, the model aims to maximise the hardware coverage and test coverage (in terms of 

tested software modules) while keeping the resource utilisation within certain thresholds. 

Reactive (On-line) Test Case Prioritisation 

Given the test resource allocation, we encounter the regression test selection problem: e.g., given 3 

hours on test system X and 5 hours on test system Y, for testing branch A, we may select test cases. 

But given this allocation we might only be able to run 20-40% of the test cases. So how should we 

prioritise? 

 

There are many techniques for test selection and prioritisation. However, it seems that existing 

techniques create a fixed test schedule before the testing starts. Using Westermo data, ABO is 

researching new techniques where tests are scheduled on the fly, while being executed. The idea is to 

first make a prioritised list, and then react to new knowledge gained during testing. 

We utilise such historical data as verdicts of test cases in our algorithm. We compared our dynamic 

approach to the original sorting, as well to the random and the static approach based on individual 

probability of failure of each test. We modified our approach and gained a better performance of the 

dynamic algorithm. First, we create a prioritised list of test cases with some static scheduler, and then 

react to new knowledge gained during testing. To re-arrange pending test cases during the execution, 

we apply conditional probability of failure and success to re-arrange test cases. To compare our 

approach to some static ones, we chose Random (R), Optimal (O) and Worst (W) algorithms. As the 

names reveal, the random algorithm schedules tests in a random manner, Optimal creates the best 

possible schedule where all failing tests are prioritised first, and Worst prioritises all passing tests first. 

We evaluated the performance in terms of failing tests identified early in the suite, APDF (Average 

Percentage of Fault Detected, related to the area under the curve metric). The results are 

demonstrated in Figure 11.4. As we can see, the dynamic approach helps to improve the schedule 

created by the static ones, except for the optimal schedule, which is expected. Currently, ÅBO is leading 

a publication on this topic where Westermo’s data set was used, and also two additional data sets 

from Company ABB Robotics Norway, see Spieker et al. [16].  
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Figure 11.4 Performance in terms of APFD applied to three static approaches on all test systems 

(top: worst, middle: random, bottom: optimal, left: static prioritisation, right: reactive prioritisation). 

 

11.3. W_UCS_2 — AI-powered root cause analysis w.r.t. functional 
issues 

In order to speed up the DevOps feedback loop, we desire AI-support for root cause analysis of 

functional issues. One way to achieve this is by developing a tool that finds previously unknown links 

or dependencies between source code changes in the software under test, source code changes in the 

test framework, and changes in verdicts of test cases. With RISE, we are exploring two tools. First, a 

tool that identifies similarities in test case executions -- i.e. test cases that failed in the same way are 
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expected to have the same root cause. Second, a tool that also uses information from code changes to 

identify and rank links from failing tests to bug-inducing commits. 

 

11.3.1. Summary of preliminary results 

The software development process at Westermo is feature driven, this means that many small 

software teams work in parallel branches of the software. Each of the branches is developed and then 

tested in isolation. The testing is performed nightly on a fleet of heterogeneous test systems. Each 

night, there are typically thousands of verdicts produced, and each test execution produces anything 

from a handful to dozens of log files. For this reason, RISE developed a proof-of-concept 

implementation of LogGrouper with the goal to simplify the exploration of test results by grouping log 

files that seem to show the same error instantiated by several different test cases, possibly on different 

test systems, and maybe even on different code branches.  

 

Figure 11.5 Anonymised screenshot of one clustering. 

In Figure 11.5, we see the current status of LogGrouper. It is running in Westermo’s environment, 

produces clusterings using on-line data. However, work on parameter settings for strictness of the 

grouping, and the integration with other systems has not been finalised. 

The LogGrouper approach is evaluated at Westermo with three extracted data windows i.e. nightly 

failure logs, weekly, and all failure logs using two evaluation metrics as follows. Silhouette Coefficient, 

a value between -1 and 1 that represents the degree of separation between the resulting clusters of 
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failures. Calinski-Harabasz Index, a criterion for evaluating failure clustering techniques that lack 

ground truth labels (alternatively called the Variance Ratio Criterion). Based on the evaluation metrics, 

we found that DBSCAN and K-Means performs better in grouping failure logs and could aid functional 

root cause analysis and failure assignment. 

As an extension of LogGrouper, we are with RISE working on the Bug-Inducing Commit (BIC) tool that 

employs a natural language processing technique and heuristics to conduct log-level analysis for the 

purpose of filtering out relevant attributes associated with each commit. The first step (see Figure 11.6) 

of the approach is to perform preprocessing of git log files extracted from the Westermo Operating 

System (WeOS), Fawlty test framework, and test execution logs. The aim is to parse the data to 

introduce consistency and make sense of the logs for extracting the relevant features and ranking the 

bug-inducing commits based on their correlation. The filtering mechanism is based on two parameters: 

date range and specific feature branch of the source code changes (commits). Once the search space 

is reduced based on the filtering parameters, the relevant extracted features for WeOS and Fawlty 

framework (commit messages, the number of additions, and subtractions in source code, etc.) are 

associated with each commit and test execution logs (when filtering out critical and error log entries). 

The ranking of the commits rely on the correlation between the extracted features. 

 
Figure 11.6 Overview of Bug-Inducing Commit workflow. 

Currently, a first complete prototype of the tool has been developed (see example in Figure 11.7). 

Based on the input filters (date and branch) the tool suggests code changes that might have caused 

the failing tests. For readability, the figure only illustrates commits from the test framework, but a 

similar list with code changes from the software under test is available by scrolling. The tool will be 

evaluated with intrinsic evaluation metrics in the operational environment. 
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Figure 11.7 Overview of Bug-Inducing Commit workflow. 

 

 

11.4. W_UCS_3 — AI-powered root cause analysis w.r.t. non-functional 
quality 

In the DevOps process at the company, many systems and services are in use. On the servers that drive 

the nightly testing, we have started collecting performance data (prior to AIDOaRt this data was not 

collected systematically). One challenge for Westermo is when a server degrades or has some 

problems. With several partners, and on several hackathons, we have explored tools for anomaly 

detection in this type of performance data. In addition, there is also some performance data coming 

from the test results database, in particular the duration of test case execution (e.g., time series data 

of the duration of a test case execution of a test case night after night on one test system as the 

software under test and test framework evolves). 
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Figure 11.8 Extract of test system performance metrics visualised with Grafana 

In Figure 11.8, metrics from one server in one of the test systems in use at Westermo, is illustrated. As 

can be seen, during the second third of the test timespan, a problem occurred: an uncontrolled 

network traffic was ongoing while at the same time, the traffic was recorded to file. This led to extreme 

CPU and memory usage as well as a disk starting to be full. After the weekend, a colleague corrected 

the issue, deleted undesired files and restarted the system. 
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11.4.1. Summary of preliminary results 

 

 

Figure 11.9 Illustration of the duration in seconds (Y-axis) of one test case over time (X-axis). The change in 

colour shows then the COPADO tool identified a change in duration 

During the second AIDOaRt hackathon, Copado used their CRT tool to explore the Westermo test 

results dataset for identification of changes in the test execution time trends. A change point in this 

signal can be found with the statistical properties of the signal, see Figure 11.9. This illustrates that 

there are indeed change points in the performance of the test cases at Westermo, and that tools such 

as CRT identified them. 

 

Figure 11.10 Isolation forest plot of metrics from one test system (anomalous stats in red) 

During the summer of 2022, in collaboration with, we RISE analysed test system metrics for anomaly 

detection, based on a findings in a Master’s thesis. Using Principal Component Analysis (PCA) for 

dimensionality reduction, clustering approaches, and statistical analyses, anomalous states of the test 

systems were identified. Figure 11.10 illustrates one way of visualising the anomalies with an isolation 

forest plot. 
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For the fourth AIDOaRt Hackathon, Westermo prepared a dataset of performance data from about 20 

test systems, with about 20 time series (load, CPU usage, memory usage, etc.) sampled minute by 

minute for a month, resulting in almost 320 MB of data in CSV format. 

 

Figure 11.11 Pearson correlations between time series for one test system 

When Copado analysed this data, they explored correlations, peak values, saturation, change points 

and methods for anomaly detection. To our surprise, they identified that some clusters of related time 

series were not correlated to each other. E.g. metrics related to CPU strongly correlated (red area in 

top left of Figure 11.11), metrics related to memory usage also had correlations (left right in same 

figure), but CPU usage was not correlated to memory usage (left bottom and top right in Figure 11.11).  
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Figure 11.12 Anomaly detection with isolation forest 

Copado also explored anomaly detection, and again, isolation forest seemed to be a feasible method 

(see Figure 11.12) in particular when using more than one time series together. 

So far, none of these tools have reached beyond proof-of-concept, and no tool is integrated at 

Westermo. However, the Hackathons have shown that there is most likely great value in using these 

types of statistical analyses, and if this data could be combined with more data (e.g. information on 

what the test systems are doing when this data is being collected), then more sophisticated AI-based 

tools could also be meaningful. 

Furthermore, these types of analyses are not present in tools currently offered by Copado. Results 

from the Hackathons could therefore indicate new potential venues for commercialization. 

11.5. W_UCS_4 — AI-powered log analysis/root cause analysis 

At Westermo, nightly automated regression testing is an important activity for quality control. A 

repetitive and time consuming task is for humans to investigate and explore test results from nightly 

testing by reading log files. This use case scenario aims at enhancing this activity. As described above 

(W_UCS_2), we use log analysis in the LogGrouper tool, and no other tool specifically targets this UCS.  
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11.5.1. Summary of preliminary results 

 

Figure 11.13 Overall process of LogGrouper. 

In the LogGrouper tool (see Figure 11.13), log files are processed with (A) pre-processing, where logs 

are converted to lower-case, timestamps are removed, tokens were lemmatised, etc. the input and 

output of pre-processing is illustrated with a few lines of log in dashed boxes in the figure. Next, (B) for 

vectorisation, the tool supports tfidf, Fast-Text, and BERT. For vector dimensionality reduction, 

LogGrouper uses PCA. For the clustering, we evaluated DBSCAN, kMeans, spectral and agglomerative, 

where DBSCAN performed best (kMeans was sometimes better), and spectral has the poorest 

performance.  

11.6. Requirements Coverage 

The Westermo use case has four use case scenarios described in detail above. The use case also has 

the following four requirements: 

● (W_R_1) AI/ML-powered monitoring/automation of DevOps process. 

● (W_R_2) Quality monitoring and predictions in devops process. 

● (W_R_3) Extract data from steps in the DevOps process. 

● (W_R_4) Log file storing, indexing, searching, clustering and comparing.  

The links between use case scenarios and requirements are mapped in Table 11.2: 

Table 11.2: Mapping of Westermo use case scenarios and requirements 

 W_R_1 W_R_2 W_R_3 W_R_4 

W_UCS_1 X  X X 

W_UCS_2  X   

W_UCS_3  X   

W_UCS_4    X 
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Since the mapping between requirements and use case stories is not one-to-one this use case discusses 

requirements coverage in the below subsections, requirement by requirement. 

 

W_R_1 - AI/ML-powered monitoring/automation of DevOps process 

W_R_1 is a high-level requirement on introducing A/ML in the DevOps process at Westermo. It could 

almost be considered a parent of W_R_2, W_R_3 and W_R_4, and all tools evaluated for the Westermo 

use case cover it. In particular, the solutions LogGrouper and BIC both address W_R_1 in that they use 

AI/ML to speed up the process of fault-finding.  

Tools by ÅBO, Copado and RISE to automate detection of performance anomalies could also be 

considered as covering this requirement since they would reduce the number of stops of productivity 

in the DevOps process (e.g. if a test system server has a full disk and must be manually fixed). 

Furthermore, a test resource allocation (RISE) and an on-line test prioritisation tool (ÅBO) would also 

increase the level of automation and improve resource usage at Westermo. Thereby also covering 

W_R_1. 

To conclude, this requirement is well covered. 

 

W_R_2 - Quality monitoring and predictions in devops process 

With AI/ML, Westermo expects to enable monitoring of different quality attributes (both functional 

like failing tests, and non-functional like performance), thereby allowing the introduction of various 

alerts and predictions. In turn, this is expected to lead to increased flow in the development process. 

For quality monitoring, tools to detect performance anomalies (in particular tools by Copado, and the 

tool abandoned by RISE) targets this requirement well. 

So far, these tools have worked on off-line data, and only been evaluated at Hackathons or by an 

abandoned tool by RISE. For this reason, the requirement has been targeted, but not as well as W_R_1, 

and no tool has left the stage of proof-of-concept. 

 

W_R_3 - Extract data from steps in the DevOps process 

To support the flow of the entire DevOps process, each step ought to have data that can be stored and 

extracted in suitable formats. This includes increasing the number of data sources, as well as making 

the data more accessible. This has been targeted by work at Westermo, e.g. by collection of 

performance data from test system servers, as well as by processing log files.  

This requirement has been targeted to some extent, but more data should be collected (see e.g. 

W_UCS_1_KPI_2.2_1 for a deeper discussion). 

 

W_R_4 - Log file storing, indexing, searching, clustering and comparing 
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From the development process, a large amount of data in the form of log files are produced. These 

ought to be stored (and perhaps indexed) so that a human or an AI could search in them, or use them 

in other ways. This requirement is targeted specifically by W_UCS_4 and the tools LogGrouper and BIC 

that make use of logs. Parts of this requirement are well covered, but more work could be done, e.g. 

on log exploration such as the scenario where the system would say ‘engineers that looked at this log 

also looked at these other logs’. 

11.7. KPI Evaluation 

W_UCS_1_KPI_2.2_1 — More collected logs 

Table 11.3: W_UCS_1_KPI_2.2_1 — More collected logs 

KPI Identifier: W_UCS_1_KPI_2.2_1 Scenario Identifier: W_USC_1 

KPI Description: Increase of the number of available log sources for enabling AI-Powered 
monitoring, root causing, prediction, etc. 

Refined 

AIDOaRt KPI: 

Description: Increase in the number of available data sources to be actually 
managed and handled in existing engineering practices. 

Identifier: KPI_2.2 Target  ≥ 25% 

KPI Measure: k = Number of log types collected and managed in the DevOps process 

KPI Baseline: Source: Discussions with the test framework and DevOps team. 

Value: k0 = 6 (see below) 

Target: Increase: 100·Δ/k0 = 100·(k - k 0)/k0  ≥ 25%  

D5.6 Measure: Value: k6 = 7 100·Δ6/k0 = 100·(7 – 6)/6 = 17% 

D5.7 Measure: Value: k7 = 7 100·Δ7/k0 = 100·(7 – 6)/6 = 17% 

This KPI measures the increase in number of log sources Westermo collects. As an example: before 

AIDOaRt we did not collect performance metrics from the PCs running our test framework, but we do 

this now. This is an increase of log source by 1. However, we measure this KPI as being relative to the 

number of log formats we had before AIDOaRt. 

Log sources collected before AIDOaRt were: (1) Compilation log, from when a compiler in the DevOps 

chain compiles the software. (2) Static code analysis logs, that looks for memory leaks, etc. (3) Test 

framework log, from when the test framework is running test cases. (4) Device communication log 

(from when the test framework communicates with devices). (5) Source code history (git log) from the 

software under test (WeOS), (6) git log from the test framework.  

Log sources now collected (thanks to AIDOaRt): (vii) Performance metrics from PCs running the test 

framework. 

This KPI has not changed since D5.6. Log sources we hope to also collect during AIDOaRt: (viii) 

Performance metrics from devices under test. (ix) Remote logging from devices under test to the test 

framework. Currently, we design test systems with the assumption that we can only trust the console 

connection (a serial connection for configuration and other low level things). One could imagine 

changing the design of test systems such that remote logging would be possible over ethernet. Then 
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the test framework could consume the remote logs and react to events from these logs that would 

otherwise potentially be lost. Finally, (x) Crash logs details from devices under test: if an application 

crashes while testing, stack traces and/or memory dumps could be collected that could greatly speed 

up debugging, and potentially enhance an AI. 

 

W_UCS_2_KPI_1.2_1 — Faster root causing of functional issues 

Table 11.4: W_UCS_2_KPI_1.2_1 — Faster root causing of functional issues 

KPI Identifier: W_UCS_2_KPI_1.2_1 Scenario Identifier: W_USC_2 

KPI 
Description: 

Improvement of the time needed to root cause functional issues. 

Refined 

AIDOaRt KPI: 

Description: Improvement of the early detection of system deviations 

Identifier: KPI_1.2 Target  ≥ 30% 

KPI Measure: k = Average amount of time spent per functional root cause investigation. 

KPI Baseline: Source: See details below. 

Value: k0 = See details below. 

Target: Decrease: 100·Δ/k0 = 100·(k0 – k)/k0  ≥ 30%  

The challenge with this KPI (and the next) is to accurately measure the amount of time spent in root 

cause investigations, and to compare a situation at the start of the project with another situation at 

the end of the project. Confounding variables could be, e.g. that colleagues have learned to recognize 

certain types of problems and that the decrease in time is caused by this. 

Therefore, in order to measure this progress, Westermo plans to use a proxy metric: to observe 

practitioners when they are conducting root-causing using tools developed under AIDOaRt, and to ask 

how much slower the root-causing would have been without these tools. We hope to conduct these 

measurements at least for D5.8 and D5.9.  

 

W_UCS_3_KPI_1.2_1 — Faster root causing of non-functional issues 

Table 11.5: W_UCS_3_KPI_1.2_1 — Faster root causing of non-functional issues 

KPI Identifier: W_UCS_3_KPI_1.2_1 Scenario Identifier: W_USC_3 

KPI 
Description: 

Reduction of the person time needed to be invested in root cause investigations 
of non-functional quality issues. 

Refined 

AIDOaRt KPI: 

Description: Improvement of the early detection of system deviations 

Identifier: KPI_1.2 Target  ≥ 30% 

KPI Measure: k = Average amount of time spent per non-functional root cause investigation. 

KPI Baseline: Source: See details below. 

Value: k0 = See details below. 

Target: Decrease: 100·Δ/k0 = 100·(k0 – k)/k0  ≥ 33%  

Again, this KPI (like the previous one) is to measure effort spent in non-functional root cause 

investigation. An important difference is that data collection for quality attributes (e.g. test framework 
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server CPU usage) was absent prior to AIDOaRt. As discussed above, Westermo now collects data of 

this type in an automated manner. Thus, events can now be monitored in ways that were impossible 

prior to AIDOaRt. So despite not yet having a well-defined process to measure this KPI, we believe we 

are on the right track. Again, we hope to conduct these measurements at least for D5.8 and D5.9. 

 

W_UCS_4_KPI_3.1_1 — Log Clustering 

Table 11.6: W_UCS_4_KPI_3.1_1 

KPI Identifier: W_UCS_4_KPI_3.1_1 Scenario Identifier: W_USC_4 

KPI 
Description: 

Implementation of log clustering for some of the log types available at start of 
project. 

Refined 

AIDOaRt KPI: 

Description: Increase in the percentage of the automated parts of the processes 
which are currently manual (e.g. predictive maintenance, 
generation of test cases). 

Identifier: KPI_3.1 Target  ≥ 30% 

KPI Measure: k = percentage of log types available (at start of project) with clustering 

KPI Baseline: Source: At the beginning of the project, no log clustering was implemented. 

Value: k0 = 0% 

Target: Increase: k  ≥ 30%  

D5.6 Measure: Value: k6 = 17 100·k6 = 17% 

D5.7 Measure: Value: k7 = 50 100·k7 = 50% 

At the beginning of the project, there were six log types stored systematically and explored as part of 

nightly testing. Currently, with the LogGrouper tool, one such log type has a proof-of-concept 

implementation of clustering, and logs from both the software under test and the test framework are 

used in the BIC tool. So this KPI is achieved. However, the BIC tool does not exactly cluster (but it uses 

the information in other ways), and the tools have not been fully evaluated. 

11.8. Planned improvements 

When it comes to planned improvements, first, the top priority for Westermo is to continue working 

on refining the LogGrouper and the Bug-Inducing commit tools, and if possible to integrate them more 

in our DevOps environment. Second, if AI-enhanced tools for monitoring performance data from test 

systems (or in the future, the devices under test) would show promising results, then a similar effort 

to integrate those tools could also be relevant. Third, for the topics of test correlations, resource 

allocation and test prioritisation, the knowledge or tools that come out of these collaborations is 

valuable and might be explored more in future projects.  

From the perspective of other partners in AIDOaRt, work on the Westermo use case could produce 

insights of scientific value or tool improvements, as has been shown thus far in the project, and in 

particular in Hackathons.  

Here are the planned improvements, tool by tool: 
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● Test Correlations: No tool is currently in use at Westermo for test correlations. Given that 

Westermo has released a test results dataset that identifies correlations, we would welcome 

future investigations of this. 

● Performance Metrics: Again, no tool is currently in use at Westermo for monitoring 

performance metrics. We hope to be able to release an anonymized dataset of performance 

data to help stimulate exploration of new tools. 

● LogGrouper (RISE): A prototype implementation of LogGrouper by RISE has been delivered to 

Westermo. A simple front-end has been implemented that interfaces with LogGrouper and 

just shows whatever it produces, see Figure 11.5. Future steps are to improve the explanations 

of the clusters, and explore parameters such as strictness of clustering. Currently, there are 

many irrelevant words that have to be added to the stop list, and Westermo should probably 

also improve the contents of the logging to improve the tools performance. Finally, the 

clustering ought to be integrated into systems already in use, instead of being an external tool. 

● Bug-Inducing Commit (RISE): The plan is to improve the ranking mechanism of Bug-Inducing 

commits by considering more relevant test logs execution features using Machine Learning. 

Furthermore, there are plans to further investigate the prioritisation of resolving a failing test 

case among multiple failing test cases sharing a similar commit, but with different execution 

logs.  

● Test resource allocation (RISE): The problem definition (and optimization model formulation) 

and the data set preparation are on-going activities. Working meetings are organised with RISE 

for defining (a) the Westermo resource allocation problem (state-of-practice analysis) and (b) 

formulating the optimization model (state-of-the art analysis). As next steps, an interesting 

research direction that we intend to investigate concerns an empirical study performed by 

using Westermo historical testing data.  

● STGEM (ÅBO): For on-line test prioritisation, ÅBO are considering implementing additional 

performance metrics for evaluation and comparison as well as other techniques that could 

improve the performance of the on-line algorithm. 

● CRT (Copado): The functionalities developed and showcased during the hackathon hold 

significant value to Copado. As a result, Copado is meticulously strategizing to integrate these 

features into CRT. These enhancements are anticipated to broaden the accessibility and 

adaptability of Copado's CRT solution across diverse use cases, thereby elevating its inherent 

value and potential for end users. 

11.9. Planned demonstration  

Given that the collaborations for the Westermo use case are somewhat heterogeneous, we aim to 

provide two main tracks of demonstrations: 

● First, a demonstration of test results exploration. Typically, Westermo staff looks at test results 

from nightly testing in the mornings to understand the state of the software under test, or if 

there are problems with the test framework. In this scenario, we expect that the LogGrouper 
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and the Bug-Inducing Commit tool would both illustrate improvements from AIDOaRt. If 

possible, we would like to also demonstrate improvements based on findings and/or 

anomalies with respect to test correlations and performance metrics in the same scenario. 

However, we do not expect to integrate tools into the Westermo DevOps process, instead 

these tools will likely be off-line tools. 

● Second, during AIDOaRt, we have collaborated on tools that we expect to be less mature, or 

would have a longer distance to integrate into Westermo. These will probably be 

demonstrated off-line. We can expect three sub-groups: 

○ Improvements in CRT (Copado). We can expect that some but not all of the work on 

CRT during AIDOaRt is related to Westermo. 

○ The model for optimising value in test resource allocation could be demonstrated with 

off-line data, and compared to the manual process currently in place. 

○ On-line test prioritisation could be demonstrated using the test results data set, and 

compared to random ordering (and the original ordering in the data set).  
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12. Conclusions 

This deliverable reports the status, at the project month M30, of evaluation of development within 

individual case studies of the AIDOaRt.  

In the deliverable, the “case study provider” partners report on the evaluation of progress made in the 

development of each case study. In particular, they describe (and try to quantify where applicable) 

how use of AIDOaRt tools have contributed to solving some of the challenges they face in each 

development scenario, as well as the plans to solve the remaining ones. The “solution provider” 

partners contribute to this description and recall intermediate evaluation of the progress of their work. 

The deliverable is a starting point for the next development phase.  

KPIs — this deliverable updates the measurements based on specification of the case studies KPIs (Key 

Performance Indicators), or adding baseline for the remaining KPIs. All these indicators were derived 

from the project KPIs, through specialisation and adaptation of the latter to the system developed in 

the case study, to the partner interests and processes, and to the used tools.  

In this deliverable, each partner reported baseline or updated measurements of multiple KPIs. The 

number of indicators per partner is shown in Figure 12.1. 

 

Figure 12.1 Number of KPIs per project partner 

For each project level KPI, Figure 12.2 shows the number of measurements of the case study KPIs that 

derive from the former. As well, number of already measured KPIs is added to the chart. 
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Figure 12.2 Project KPIs statistics 

It can be seen that there is no measurement for KPI_2.1 and KPI_2.3 at the moment. On the other side, 

4 KPIs are already fulfilled meeting or overcoming the target. These were covered by HIB, PRO and 

WMO. The rest seems to be on good track – another 8 measurements were done including explanation 

of proposed improvements for the next development phase. On the other hand, the rest of KPIs with 

baseline explains in detail status and progress and it is obvious that most of them will be finished during 

the next development phase and measured during the next evaluation phase. For almost all KPIs, the 

total number of measurements is higher than the number grouped by case study, because there are 

case studies that address the same KPI in more than one scenario.  

As well as in D5.6 [9], KPI_3.1 is still the most used since it is related to the automation of the global 

development process: “Increase in the percentage of the automated parts of the processes which are 

currently manual (e.g. predictive maintenance, generation of test cases).” KPI_1.1 and KPI_1.2 are the 

second most used. The first one is defined as “Improvement of the time required for identification of 

design problems thanks to the analysis of the collected data.” The second one is defined as 

“Improvement of the early detection of system deviations.”  

Planned improvements— In the next months, by using the improvements of the tools available in the 

meantime, there will be further improved development of the case studies that allow final evaluation, 

with the support of the updated measurements of KPIs. These results will be reported in D5.8 [10] to 

be released before the end of the project (M34).  

Planned demonstrations — In the next months, by using the improvements of the tools available in the 

meantime, the development of the case studies will be brought to the final state that allows evaluation 

of the project final outcomes, with the support of the last measurements of KPIs. These results might 

be reported in D5.9 [11] to be released at the end of the project (M36).  
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