
EPiC Series in Computing
Volume 96, 2023, Pages 151–169

Proceedings of 10th International Workshop on Applied
Verification of Continuous and Hybrid Systems (ARCH23)

ARCH-COMP 2023 Category Report:
Falsification∗

Claudio Menghi1,2, Paolo Arcaini3, Walstan Baptista7, Gidon Ernst4,
Georgios Fainekos5, Federico Formica2, Sauvik Gon6, Tanmay Khandait7,

Atanu Kundu6, Giulia Pedrielli7, Jarkko Peltomäki8, Ivan Porres8,
Rajarshi Ray6, Masaki Waga9, and Zhenya Zhang10

1 University of Bergamo, Bergamo, Italy claudio.menghi@unibg.it
2 McMaster University, Hamilton, Canada {menghic,formicaf}@mcmaster.ca
3 National Institute of Informatics (NII), Tokyo, Japan arcaini@nii.ac.jp

4 Ludwig-Maximilians-University (LMU), Munich, Germany gidon.ernst@lmu.de
5 Toyota Motor North America, Research & Development georgios.fainekos@toyota.com

6 Indian Association for the Cultivation of Science, Kolkata, India
{ugsg2584,mcsak2346,rajarshi.ray}@iacs.res.in

7 Arizona State University (ASU), Tempe, USA {wbaptist,tkhandai,gpedriel}@asu.edu
8 Åbo Akademi University, Turku, Finland {jarkko.peltomaki,ivan.porres}@abo.fi

9 Kyoto University, Japan mwaga@fos.kuis.kyoto-u.ac.jp
10 Kyushu University, Japan zhang@ait.kyushu-u.ac.jp

Abstract

This report presents the results from the 2023 friendly competition in the ARCH work-
shop for the falsification of temporal logic specifications over Cyber-Physical Systems. We
describe the benchmark models selected to compare the tools and the competition settings
and provide background on the participating teams and tools. Finally, we present and
discuss our results.

Data: https://gitlab.com/goranf/ARCH-COMP, https://dx.doi.org/10.5281/zenodo.8024426

1 Introduction
We report on one category of the friendly competition associated with the ARCH 2023 work-
shop. The goal of the competition is to compare the state-of-the-art of tools for testing and
verification of various types of hybrid systems. The competition is organized in different cate-
gories. This report concerns the falsification category, which targets the analysis of executable
models with respect to requirements expressed in temporal logic with time bounds, encoded in
Metric Temporal Logic (MTL) [24] or Signal Temporal Logic (STL) [25]. The task is to search for

∗The falsification category was coordinated by the first author. The remaining authors represent all partici-
pants who have contributed results and/or text to this report and they are listed alphabetically.

G. Frehse and M. Althoff (eds.), ARCH23 (EPiC Series in Computing, vol. 96), pp. 151–169

https://gitlab.com/goranf/ARCH-COMP
https://dx.doi.org/10.5281/zenodo.8024426

ARCH-COMP 2023: Falsification with Unbounded Resources Menghi et al.

initial system configurations and time-varying inputs subject to given constraints that steer the
system into a violation status with respect to the temporal requirements. Typical approaches
are simulation-based and employ quantitative metrics [17, 19] of how close a given input is to
violating a requirement (“robustness semantics”). Research in this area has produced a variety
of techniques, mature tools, and practical applications; these are described in overview survey
articles [5, 8]. For past instalments of this competition 2017–2022 see [9, 10, 14, 13, 12, 15].
The benchmark set developed by this competition series can be seen as a baseline for research
in the area (cf. [11]), and we encourage authors to compare to the results presented here.

The competition of 2023 followed the structure of previous years: Once the benchmarks are
agreed on, the participants run the experiments on their own machines and submit the results
including concrete input traces that witness falsification. We continue validating these coun-
terexamples found by different tools to ensure the correctness of the results. Besides, there are
four notable changes in the competition this year:

• We added a Pacemaker benchmark model to the competition [3]. This benchmark model
provides a practical example from the medical domain, which the other models considered
in the competition do not cover.

• We had three new tools participating in the competition: ATheNA [18], NNFal [28], and
STGEM [34] (see Section 3.6). The tools falsify [38] and FalStar [16] decided to not
join the competition this year.

• We reintroduced a maximal number of simulations that can be run in one falsification trial.
Unlike previous versions of the competition that set a maximal number of simulations (in
2021 the maximum number was set to 300), we set the maximum number of simulations to
the value 1500 to obtain a more accurate comparison of the tools for difficult benchmarks.

• We report the ratio of the the time taken by simulation in a falsification trial and the
total time. The aim is to understand the cost of different falsification algorithms and
implementations.

This report is structured as follows. Section 2 introduces our benchmark models and re-
quirements. Section 3 describes the tools participating in the competition. Section 4 presents
the results obtained by the different tools. Section 5 presents the results obtained by tools that
can produce probabilistic guarantees for falsification. Finally, Section 6 concludes the report
with our reflections.

Data Availability. The models and validation results produced by this competition are avail-
able through the shared GitLab repository at https://gitlab.com/goranf/ARCH-COMP, notably
in the subfolders models/FALS and 2023/FALS. An archive containing the traces submitted for
validation is available at https://dx.doi.org/10.5281/zenodo.8024426. This archive contains
the result of validation and instructions to re-validate the results.

2 Benchmark

This section presents our benchmarks. First, we present two parametrizations of the input
domain considered in this edition of the competition to generate the input signals for the
models (Section 2.1). Then, we present the benchmark models and requirements (Section 2.2).

152

https://gitlab.com/goranf/ARCH-COMP
https://dx.doi.org/10.5281/zenodo.8024426

ARCH-COMP 2023: Falsification with Unbounded Resources Menghi et al.

2.1 Input Parameterization

The participants have to consider two parametrizations to generate inputs signals for their
models: (a) arbitrary piecewise continuous input signals and (b) constrained input signals.

Arbitrary piecewise continuous input signals (Instance 1). This option leaves the
input specification up to the participants. The search space is, in principle, the entire set of
piecewise continuous input signals (i.e., discontinuities are permitted), where the values for each
individual dimensions are from a given range. Each benchmark may impose further constraints.
Participants may instruct their tools to search a subset of the entire search space, notably to
achieve finite parametrization, and then to apply an interpolation scheme to synthesize the
input signal.

However, the participants agreed that such a choice must be “reasonable” and should be
justified from the problem’s specification without introducing additional knowledge about the
solutions. Moreover, more general parametrizations that are shared across requirements and
benchmark models were preferable. Due to the diversity of benchmarks, it was decided to
evaluate the proposed solutions using common sense.

Constrained input signals (Instance 2). This option precisely fixes the format of the
input signal, potentially allowing discontinuities. An example input signal would be piecewise
constant with k equally spaced control points, with ranges for each dimension of the input, dis-
abling interpolation at Simulink input ports so that tools don’t need to up-sample their inputs.
The arguments in favor of that are increased comparability of results. As a possible downside
it was mentioned that optimization-based tools (S-TaLiRo and Breach) are just compared with
respect to their optimization algorithm. Nevertheless such a comparison is still meaningful in
particular with the other, fundamentally different approaches to falsification that have entered
the competition since.

2.2 Models and Requirements

We provide a short textual description of our benchmark models. Table 1 reports the corre-
sponding requirements formalized as STL/MTL formulas.

Automatic Transmission (AT). This model of an automatic transmission encompasses a
controller that selects a gear 1 to 4 depending on two inputs (throttle, brake) and the current
engine load, rotations per minute ω, and car speed v. It is a standard falsification benchmark
derived from a model by Mathworks and has been proposed for falsification in [21].

Input specification: 0 ≤ throttle ≤ 100 and 0 ≤ brake ≤ 325 (both can be active at the same
time). Constrained input signals (instance 2) permit discontinuities at most every 5 time units.
Requirements are specific versions of those in [21] where the parameters have been chosen to
be somewhat difficult.

Fuel Control of an Automotive Powertrain (AFC). The model is described in [23]. The
values used in the requirements are chosen to make falsification possible but reasonably hard.

Input specification: The constrained input signal (instance 2) fixes the throttle θ to be
piecewise constant with 10 uniform segments over a time horizon of 50 with two modes (normal
and power corresponding to feedback and feedforward control), and the engine speed ω to
be constant with 900 ≤ ω < 1100 to capture the input profile outlined in [23]. As in previous

153

ARCH-COMP 2023: Falsification with Unbounded Resources Menghi et al.

edition of the competition, we do not consider the unconstrained (instance 1) input specification.
Faults are disabled (e.g. by setting fault_time > 50).

Neural-network Controller (NN). This benchmark is based on Mathwork’s neural net-
work controller for a system that levitates a magnet above an electromagnet at a reference
position. 1 It has been used previously as a falsification demonstration in the distribution of
Breach. The model has one input, a reference value Ref for the position, where 1 ≤ Ref and
Ref ≤ 3. It outputs the current position of the levitating magnet Pos. The requirement ensures
that after changes to the reference, the actual position eventually stabilizes around that value
with small error.

Input specification: The input specification for instance 1 requires discontinuities to be at
least 3 time units apart, whereas instance 2 specifies an input signal with exactly three constant
segments. The time horizon for the problem is 40.

Chasing cars (CC). The model is derived from Hu et al. [22] which presents a simple model
of an automatic chasing car. Chasing cars (CC) model consists of five cars, in which the first
car is driven by inputs (throttle and brake), and other four are driven by Hu et al.’s algorithm.
The output of the system is the location of five cars y1, y2, y3, y4, y5. The properties to be
falsified are constructed artificially, to investigate the impact of complexity of the formulas to
falsification.

Input specification: The input specifications for instance 1 allows any piecewise continuous
signals while the input specification for instance 2 constraints inputs to piecewise constant
signals with control points for each 5 seconds, i.e., 20 segments.

Aircraft Ground Collision Avoidance System (F16). The model has been derived from
the one presented in [20]. The F16 aircraft and its inner-loop controller for Ground Collision
avoidance have been modeled using 16 continuous variables with piecewise nonlinear differential
equations. Autonomous maneuvers are performed in an outer-loop controller that uses a finite-
state machine with guards involving the continuous variables. The system is required to always
avoid hitting the ground during its maneuver starting from all the initial conditions for roll,
pitch, and yaw in the range [0.2π, 0.2833π]× [−0.4π,−0.35π]× [−0.375π,−0.125π].

Input specification: Since the benchmark has no time-varying input, there is no distinction
between instance 1 and instance 2. The requirement is checked for a time horizon equal to 15.

Steam condenser with Recurrent Neural Network Controller (SC). The model is
presented in [37]. It is a dynamic model of an steam condenser based on energy balance and
cooling water mass balance controlled with a Recurrent Neural network in feedback. The time
horizon for the problem is 35 seconds. The input to the system can vary in the range [3.99, 4.01].

Input specification: For instance 2, the input signal should be piecewise constant with
20 evenly spaced segments.

Pacemaker (PM). This model represents a simple controller of a pacemaker device [3]. The
controller artificially stimulates the heart muscle to contract when no natural activity is present
for a given time. The input of the system is the desired lower rate limit that can vary in the
range [50, 90].

1https://au.mathworks.com/help/deeplearning/ug/design-narma-l2-neural-controller-in-simulink.html

154

https://au.mathworks.com/help/deeplearning/ug/design-narma-l2-neural-controller-in-simulink.html

ARCH-COMP 2023: Falsification with Unbounded Resources Menghi et al.

Table 1: Requirement formulas for the benchmarks
Key STL formula Remarks/Constraints

AT1 2[0,20]v < 120
AT2 2[0,10]ω < 4750
AT51 2[0,30]((¬g1 ∧ ◦ g1) → ◦ 2[0,2.5]g1) where ◦ ϕ ≡ 3[0.001,0.1] ϕ
AT52 2[0,30]((¬g2 ∧ ◦ g2) → ◦ 2[0,2.5]g2)
AT53 2[0,30]((¬g3 ∧ ◦ g3) → ◦ 2[0,2.5]g3)
AT54 2[0,30]((¬g4 ∧ ◦ g4) → ◦ 2[0,2.5]g4)
AT6a (2[0,30]ω < 3000) → (2[0,4]v < 35)
AT6b (2[0,30]ω < 3000) → (2[0,8]v < 50)
AT6c (2[0,30]ω < 3000) → (2[0,20]v < 65)

AT6abc AT6a ∧ AT6b ∧ AT6c conjunctive requirement

AFC27 2[11,50]((rise ∨ fall) → (2[1,5]|µ|< β)) 0 ≤ θ < 61.2 (normal mode)
AFC29 2[11,50]|µ|< γ 0 ≤ θ < 61.2 (normal mode)
AFC33 2[11,50]|µ|< γ 61.2 ≤ θ ≤ 81.2 (power mode)

where β = 0.008, γ = 0.007

rise = (θ < 8.8) ∧ (3[0,0.05](θ > 40.0))
fall = (θ > 40.0) ∧ (3[0,0.05](θ < 8.8))

NN 2[1,37](|Pos − Ref |> α+ β|Ref |→ 3[0,2]2[0,1]¬(α+ β|Ref |≤ |Pos − Ref |))
where α = 0.005 and β = 0.03

NNx 3[0,1](Pos > 3.2) ∧3[1,1.5](2[0,0.5](1.75 < Pos < 2.25)) ∧2[2,3](1.825 < Pos < 2.175)
conjunctive requiremet
1.95 ≤ Ref ≤ 2.05

CC1 2[0,100]y5 − y4 ≤ 40
CC2 2[0,70]3[0,30]y5 − y4 ≥ 15
CC3 2[0,80]((2[0,20]y2 − y1 ≤ 20) ∨ (3[0,20]y5 − y4 ≥ 40))
CC4 2[0,65]3[0,30]2[0,20]y5 − y4 ≥ 8
CC5 2[0,72]3[0,8]((2[0,5]y2 − y1 ≥ 9) → (2[5,20]y5 − y4 ≥ 9))
CCx

∧
i=1..4 2[0,50](yi+1 − yi > 7.5) conjunctive requirement

F16 2[0,15]altitude > 0

SC 2[30,35](87 ≤ pressure ∧ pressure ≤ 87.5)

PM 2[0,10](paceCount ≤ 15) ∧3[0,10](paceCount ≥ 8)

Input specification: For instance 2, the input signal should be piecewise constant with
5 evenly spaced segments.

3 Participants

We present in alphabetical order all participating tools, the respective main ideas of the under-
lying approaches, followed by details on how each tool was set up for the competition.

155

ARCH-COMP 2023: Falsification with Unbounded Resources Menghi et al.

3.1 ARIsTEO
Description. ARIsTEO [26] is a Matlab toolbox for test case generation against system
specifications developed on the top of S-TaLiRo. ARIsTEO is designed to targeting a large
and practically-important category of CPS models, known as compute-intensive CPS (CI-CPS)
models, where a single simulation of the model may take hours to complete. ARIsTEO embeds
black-box testing into an iterative approximation-refinement loop. At the start, some sampled
inputs and outputs of the model under test are used to generate a surrogate model that is faster
to execute and can be subjected to black-box testing. Any failure-revealing test identified for
the surrogate model is checked on the original model. If spurious, the test results are used
to refine the surrogate model to be tested again. Otherwise, the test reveals a valid failure.
ARIsTEO is publicly available under the General Public License (GPL). 2

Setup. ARIsTEO provides the same interface and parameters as S-TaLiRo, while providing
additional configuration options. We had used an arx model (arx-2) with order na = 2,
nb = 2, and nk = 23 as structure for the surrogate model used in the approximation-refinement
loop of ARIsTEO. For models with multiple inputs and outputs the dimension of the matrix
na, nb and nk is changed depending on the number of inputs and outputs. We used the
default configuration of S-TaLiRo for searching failure-revealing revealing tests on the surrogate
model. We considered the same parametrization of S-TaLiRo for the input signals. The original
Simulink model was executed once to learn the initial surrogate model. The cut-off values for the
number of simulations of the original model and for the number of simulations of the surrogate
model (per trial) were set to 1500.

3.2 ATheNA
Description. ATheNA [18] is a Matlab toolbox for automatic test case generation guided by
a combination of automatic and manual fitness functions. ATheNA allows the user to specify a
manually-defined fitness function and choose a strategy to combine the automatic and manual
fitness values into the ATheNA fitness value. The manually-defined fitness functions can de-
signed by the engineer and can consider both the inputs and the outputs of the model. ATheNA
employs S-TaLiRo to compute the automatic fitness function, starting from the MTL/STL spec-
ification. The model inputs are generated by an optimization algorithm that tries to lower the
value of the ATheNA fitness. ATheNA enables the engineer to focus the exploration of the
input space on areas that are considered particularly critical and to switch between different
types of fitness functions depending on the situation.

Setup. ATheNA has the same interface of S-TaLiRo, but requires additional information
on the manual fitness function and the ATheNA fitness function. We defined a manual fitness
function for each model and requirement by reverse-engineering the model. The ATheNA fitness
has been calculated as the weighted average of the automatic and manual values. The weight
of the two values depends on our confidence in the capabilities of the functions to lead to the
identification of a fault. The manual and ATheNA fitness functions used in Instance 1 and
Instance 2 are the same. The search algorithm used is Simulated Annealing and the maximum
number of iterations for the search process has been set to 1500.

2https://github.com/SNTSVV/ARIsTEO
3https://nl.mathworks.com/help/ident/ref/arx.html

156

https://github.com/SNTSVV/ARIsTEO
https://nl.mathworks.com/help/ident/ref/arx.html

ARCH-COMP 2023: Falsification with Unbounded Resources Menghi et al.

3.3 FalCAuN

Description. FalCAuN [36] is an experimental tool for testing a Simulink model using black-
box checking [30], an automated testing method based on active automata learning and model
checking. In FalCAuN, the input and the output signals of the Simulink model are discretized in
time and values, and the model is abstracted into a black-box Mealy machine. FalCAuN learns
the Mealy machine and conducts model checking to find a counterexample. FalCAuN is designed
to efficiently falsify a Simulink model against multiple specifications by reusing the learned
Mealy machine. FalCAuN is publicly available under General Public License (GPL) v34.

We utilize the discrete-time semantics of STL, which is essentially the same as the semantics
of LTL. Because of such discretization, the control points must be fine enough to capture the
timing constraints in the STL formula. For example, in order to capture the timing constraint
3[0,0.05], the duration between the control points must be at most 0.05. We note that due to
the use of the discrete-time semantics, the signal reported as a counterexample by FalCAuN may
not falsify the model in terms of the continuous-time semantics.

Setup. For the signal discretization, we have the following hyperparameters: the (constant)
duration of the intervals between samples, the input signal values at the control points, and
the thresholds of the output signal values for the discretization. We used the shortest duration
between the control points such that the LTL encoding of the STL formula is small enough for
the back-end model checker LTSMin. The duration ranges from 1.0 to 10.0 time units. In most
benchmarks, we let the input signal values be the maximum and the minimum of the range.
The exceptions are as follows.

• In AT6a, AT6b, and AT6c, the throttle can be 50 in addition to 0 and 100.
• In AT2 instance 2, the throttle and the brake can be 5 and 6 evenly spaced values,

respectively, i.e., the value of the throttle can be one of 0, 25, 50, 75, and 100.
• In SCa, the input can be 4.00 in addition to 3.99 and 4.01.

In most benchmarks, we let the threshold of the output signal values be the thresholds in the
STL formula. The exceptions are as follows.

• In AT1 and AT2 instance 2, we have the common thresholds: 120 for the speed and 4750
for the RPM.

• In AT6a, AT6b, and AT6c, we have the common thresholds: 35, 50, and 65 for the speed
and 3000 for the RPM.

• In CC1, CC2, and CC3, we have the common thresholds: 15 and 40 for y5 − y4 and 20
for y2 − y1.

3.4 ForeSee
Description. In falsification, the scale problem can occur when the signals used in the spec-
ification have different scales (e.g., rpm and speed): namely, the contribution of a signal could
be masked by another one when computing robustness. ForeSee [39] (FORmula Exploitation
by Sequence trEE) tackles this problem by introducing a new robustness definition, called QB-
Robustness, which combines quantitative robustness and classical Boolean satisfaction. QB-
Robustness does not require comparing (i.e., by minimum or maximum) robustness values of
different sub-formulas, so possibly avoiding the scale problem. However, in order to be com-
puted, QB-Robustness requires the selection of a sequence of sub-formulas along the syntax tree

4https://github.com/MasWag/FalCAuN

157

https://github.com/MasWag/FalCAuN

ARCH-COMP 2023: Falsification with Unbounded Resources Menghi et al.

of the specification for which to compute the quantitative robustness. Different sub-formulas
sequences can be more or less effective in mitigating the scale problem.

ForeSee implements a falsification strategy based on a Monte Carlo Tree Search over
the structure of the formal specification: first, by tree traversal, it identifies the sub-formulas
sequence; then, on the leaves, it performs numerical hill-climbing optimization, with the aim
of falsifying the selected sub-formulas. ForeSee is the spiritual successor of FalStar/MCTS
from [14, 13]. It is publicly available under GNU General Public License (GPL) v3.5

Setup. Since ForeSee is implemented on the basis of Breach, it provides the same interface
of Breach, namely, users can characterize the shape of input signals with a number of options,
including piecewise constant, piecewise linear, pulse, etc. In this report, we regulate the shape
of input signals with piecewise constant, parametrized by the number of control points.

In the current implementation of ForeSee, only CMA-ES [2] is provided as the optimizer;
this is due to our insight in the performances of different optimizers, in which CMA-ES outper-
forms other optimizers. However, involving other optimizers is not difficult for ForeSee, and
will be considered in the future releases.

Since ForeSee technically relies on Monte Carlo Tree Search (MCTS), the hyperparameters
in MCTS need to be properly selected. As a default setting, we use 0.2 as the scalar in the
UCB1 algorithm, that takes a balance of exploration and exploitation; and we set 10 generations
as the budget for the playout phase of MCTS.

3.5 NNFal
Description. NNFal is a surrogate model-based falsification framework for CPS. The frame-
work treats CPS as a black box and only assumes that the system to be falsified can be
simulated/executed. The foremost step in the framework is building a surrogate model from
the simulated trajectories of the CPS. In NNFal, we use a feed-forward neural network as a
surrogate model to leverage the adversarial attack algorithms targeted toward the robustness
evaluation of neural networks. The safety property is examined in the surrogate model to find
a counterexample using a deep neural network falsifier. The counterexample generated by the
framework is the initial system configuration along with the piecewise constant input signal that
drives the CPS to a safety-violating state. Since the surrogate model is an approximation of
the CPS, the generated counterexample on the surrogate may be spurious. The last step of our
framework is therefore validating the counterexample in the actual CPS. If the counterexample
is found to be spurious, necessary constraints are added in the property specification to elim-
inate the spurious counterexample from the state space and search for a new counterexample
for further investigation. NNFal is publicly available.6

Setup. The current implementation of NNFal uses pre-trained fully connected Feed-forward
Neural Network (FNN), which we build from the simulation traces of the CPS. The FNN is built
using the Keras API, a high-level API of TensorFlow. NNFal supports a portfolio of robustness
and reachability property falsifiers for finding counterexamples from the neural network. In the
experiments, we have seen that the robustness property falsifier outperforms the reachability
property falsifiers, which is why we consider the robustness falsifier as the default in our tool.
We specifically employed DNNF, a falsification method for the robustness properties of deep
neural networks. DNNF offers options for executing various adversarial attack algorithms, in

5https://github.com/choshina/ForeSee
6https://gitlab.com/Atanukundu/NNFal

158

https://github.com/choshina/ForeSee
https://gitlab.com/Atanukundu/NNFal

ARCH-COMP 2023: Falsification with Unbounded Resources Menghi et al.

which we use the Projected Gradient Descent (PGD) attack algorithm among them. It has the
advantage of random initialization to find an adversarial example. As a result, it can generate
varied counterexamples across multiple executions. The current version of NNFal does not
support all the property specifications presented in STL. In the current version, we are able to
falsify the specifications AT1, AT6c, and CC1, all for constrained input signals (instance 2).
Note that the dataset and model learning is a one-time effort. The number of simulations taken
in generating the dataset is not included in the results table. Also, the time taken in learning
the FNN model from the dataset is also not included in the results.

We target only the instance 2, so the values for NNFal in Table 2 are simply copies of those
in Table 3.

3.6 STGEM
Description. STGEM7 is an open-source toolbox for the falsification of Cyber-Physical Sys-
tems. It is written in Python and is currently in active development. STGEM supports the
falsification of an arbitrary requirement for any system under test as long as the system (with
vector or signal inputs and outputs) and the requirement robustness monitor are implemented
as Python classes. Out of the box, STGEM supports Matlab Simulink models as systems un-
der test and provides a monitor for requirements specified in STL. The user can implement a
falsification algorithm as a part of STGEM or use the existing falsification algorithms such as
OGAN [33] or WOGAN [32].

For the results presented in this report, we have chosen to use the OGAN algorithm for
falsification. It is designed for finding a single falsification whereas WOGAN is designed to find
multiple different faults. Briefly explained, OGAN trains two neural networks: a generator and
a discriminator. The discriminator is trained to learn the mapping from inputs to robustness
values. In the training of the generator a specific loss function is used to encourage the generator
to turn noise into inputs that the discriminator estimates to have low robustness. The trained
generator is sampled for an input, and the selected input is evaluated on the actual system under
test. This evaluation results in more training data for the training of the neural networks; an
initial training data is obtained via a random search. OGAN in STGEM utilizes in its search
the usual STL robustness objective [25]. We emphasize that all training is done from scratch:
OGAN does not use any precollected data or pretrained models.

Setup. The total simulation budget of 1500 simulations is large. OGAN needs an initial
random search in order to perform well, but fixing it to be a certain proportion of 1500 is
problematic. On one hand, when a large budget is available, a more exhaustive random search
can help OGAN to learn in hard problems. On the other hand, a long random search can
be excessive with easier problems, and it is possible that more simulations are done than is
necessary. To alleviate this problem, we perform the random search as follows. Initially 75
inputs are generated based on a Latin hypercube design. The system is simulated with these
inputs, and an initial training data is collected. After this, we either use OGAN to generate
the next simulation input or obtain the input by sampling the input space uniformly randomly.
The decision is done randomly in such a way that during 1500 simulations, we simulate on
average 375 random inputs (25% of 1500).

For the conjunctive requirements, we use the multi-armed bandit approach described in [31]
meaning that for N requirements we use N OGAN algorithms, one per requirement, but only
train and utilize one of them at each step.

7https://gitlab.abo.fi/stc/stgem.

159

https://gitlab.abo.fi/stc/stgem

ARCH-COMP 2023: Falsification with Unbounded Resources Menghi et al.

Since OGAN utilizes neural networks, there are many hyperparameters to choose. Not only
is it necessary to decide how many layers and nodes do the neural networks contain, but learning
rates and optimizers need to be set as well. The full description of the parameters is available
at https://gitlab.abo.fi/stc/experiments/arch-comp-23. We remark that we have done a
partial hyperparameter optimization to obtain a good overall performance on all benchmarks,
but we have not focused on any particular benchmark, and we use the same settings in all
benchmarks.

We target only the instance 2, so the values for STGEM in Table 2 are simply copies of
those in Table 3. Some validation results are omitted since we were unable to obtain them due
to technical problems with the validation tool.

3.7 Ψ-TaLiRo
Description. Ψ-TaLiRo [35], the python version of S-TaLiRo [1], is an open-source toolbox for
temporal logic robustness-guided falsification of Cyber-Physical Systems (CPS). This toolbox,
which is completely modular, helps in the generation of test cases for falsification of system
under test using a common interface for temporal logic monitors. While the toolbox provides
inbuilt optimizers (DA, Uniform Random, etc.), one can also develop new optimizers. The tool
box is publicly available on-line under General Public License (GPL).8 For this competition,
we provide results with two different optimization algorithms:

1. Conjunctive Bayesian Optimization (ConBO) models the dependencies between the
different components in a conjunctive requirement. This algorithm works by considering
a component chosen from a classifier built between the points and component with mini-
mum robustness, and then sampling a point that maximizes the Expected Improvement
(EI) function. It is important to note that this algorithm turns into a simple Bayesian
Optimization if we do not have conjunctive requirements.

2. Part-X adaptively partitions the search space to enclose the falsifying points, and can
produce probabilistic guarantees on the presence of falsifying behaviors. The algorithm
uses local Gaussian process estimates in order to adaptively branch and sample within
the input space. The partitioning approach not only helps us identify the zero level-set of
the specification robustness, but also to circumvent issues that rise due to the fact that
the robustness is discontinuous. In fact, the only assumption we need on the robustness
function is that it is a locally continuous function [29].

Setup. In Ψ-TaLiRo, input signals to black-box models are parameterized with control points
and their corresponding time stamps (for interpolation), which then leads to the formation of
an optimization problem with dimensionality depending upon the number of control points.
The input signals along with their corresponding time stamps are interpolated depending on
the benchmark problem instance. For this competition, all signals have evenly spaced control
points and are interpolated using the pchip function for instance 1, and a piecewise constant
interpolation function for instance 2. We utilize RTAMT [27] for robustness calculation.

The ConBO optimizer samples 20 points from the search space and then sequentially sam-
ples points until a falsification is found or the maximum budget of 2000 evaluations is reached.
Finally, the Part-X optimizer, which provides probabilistic guarantees, starts with an ini-
tialization budget n0 = 20, per-subregion budget for unclassified subregions with nBO = 20,
classified subregions budget nc = 50, maximum budget T = 2000, number of Monte Carlo
iterations R = 20, number of evaluations per iterations M = 500, number of cuts B = 2, and

8https://gitlab.com/sbtg/psy-taliro

160

https://gitlab.abo.fi/stc/experiments/arch-comp-23
https://gitlab.com/sbtg/psy-taliro

ARCH-COMP 2023: Falsification with Unbounded Resources Menghi et al.

classification percentile δu = 0.05. Also, we used δv = 0.001 to identify dimensions that should
not be branched. We provide the probabilistic guarantees in Table 4.

4 Evaluation & Validation

We present the experimental setup (Section 4.1) and the results of our experiment (Section 4.2)

4.1 Setup

The tools participating in the competition were instructed to run the falsification of each in-
dividual requirement 10 times, to account for the stochastic nature of most algorithms. The
cut-off for the number of simulations imposed on the experiments was 1500. This value enables
a more accurate comparison of the tools for difficult benchmarks. The results were provided
by the participants and have been obtained on multiple platforms with varying resources and
different MATLAB/Simulink versions.

The participants have to report information related to each falsification trial per require-
ment, according to the reporting format available at https://gitlab.com/gernst/ARCH-COMP/-/
blob/FALS/2021/FALS/Validation.md. The information includes:

• the benchmark (model + requirement identifier);
• the initial conditions and time-series input signal resulting from that trial;
• whether the signal is expected to falsify the requirement;
• if available, a robustness value derived from running the input through the model;
• optionally, the corresponding output signal, and further information such as time stamps

or wall-clock times.

In the following, we will refer to this information as the “reported” result.
For each tool, we compute the falsification rate, i.e., the number of trials where a falsifying

input was found, as well as the median and mean of the number of simulations required to find
such input (not including the unsuccessful runs in the aggregate). Finally, to estimate the time
spent on the search algorithm versus the time required to simulate the model, we computed the
ratio between the simulation time and the total falsification time.

We continue the effort to validate results, which has been established in 2021. The over-
arching goal is to ensure that the comparison reported here is meaningful, and the approach
taken accounts for several potential sources of error, both for technical reasons or because of
human error. The hypothetical case of cheating participants was not regarded likely, and we
emphasize upfront that no indication whatsoever for dishonest behavior was found. Rather, the
goal is to establish a higher standard of quality of evaluation results, that can ultimately benefit
any future work in simulation-based falsification: Just like the benchmark set established by
this community gets adopted by experiments in the literature, validation of results using an
independent reference checker should become standard, too. We validated the following

• the reported input signal adhere to the valid ranges of input for that particular model;
• the correctness of the reported verdict;
• the consistency of the reported robustness value and the verdict.

The results reported by the participants are presented in the following.

161

https://gitlab.com/gernst/ARCH-COMP/-/blob/FALS/2021/FALS/Validation.md
https://gitlab.com/gernst/ARCH-COMP/-/blob/FALS/2021/FALS/Validation.md

ARCH-COMP 2023: Falsification with Unbounded Resources Menghi et al.

4.2 Results
Table 2 and Table 3 respectively report the results for instances 1 and 2 for each of participant.
The tables also report the results obtained using a Uniform Random (UR) testing strategy;
that is no optimization strategy is used in the search. For each instance, the tables report the
falsification rate (FR), validated falsification rate (✓), mean number of simulations (S), median
(rounded down) number of simulations (S̃). Empty cells indicate a lack of data for a particular
benchmark due to lack of support or simply that the respective participants did not take the
time to set up and/or run these experiments. For example, NNb, NNx, F16, and SC were not
assessed for UR.

Significant effort was spent in validating the results provided by the different participants.
Two of the authors (i.e., Gidon Ernst and Tanmay Khandait) prepared a validation platform
that the participants used to assess the correctness of the results provided by the participants.

For some of the tools, e.g., FalCAuN, the results were not confirmed by the validation platform
due to differences between the configuration of the validation platform and the platform used
to run the tool. For example, some results of FalCAuN could not be confirmed due to the use
of the discrete-time semantics of STL, which was, to some degree, expected. Before evaluating
STL formulas, FalCAuN discretizes the observed signals to interpret them as strings to apply
standard automata-based techniques. However, this approach overlooks the behavior between
observed points. As a result, the validation fails for STL formulas, for example, of the form
3φ. For these cases, the value reported by the validated falsification rate (✓) column is lower
than that reported by the falsification rate (FR) column.

For some tools, the participants found technical problems running the validation for some
benchmarks, or the validation platform does not support the benchmark. These problems are
reasonable since the validation tool is in early development, and some participants used it
for the first time. For these cases, the participants reported the symbol “–” in the validated
falsification rate (✓) column. For example, the validation platform currently does not support
the validation of the pacemaker (PM) benchmark. We plan to address these limitations in the
next edition of the competition.

162

ARCH-COMP 2023: Falsification with Unbounded Resources Menghi et al.

T
ab

le
2:

R
es

ul
ts

fo
r

pi
ec

ew
is

e
co

nt
in

uo
us

in
pu

t
si

gn
al

s
(i

ns
ta

nc
e

1)
.
F
R

:
fa

ls
ifi

ca
ti

on
ra

te
,
✓

:
va

lid
at

ed
fa

ls
ifi

ca
ti

on
ra

te
,

S
:

m
ea

n
nu

m
be

r
of

si
m

ul
at

io
ns

,S̃
:

m
ed

ia
n

(r
ou

nd
ed

do
w

n)
nu

m
be

r
of

si
m

ul
at

io
ns

,R
:
(
S
im

u
la
ti
o
n
T
im

e
T
o
ta

lT
im

e
)
∗
1
0
0

(%
).

T
oo

l:
U

R
A

R
Is

T
E
O

A
T

h
eN

A
F
a
l
C
A
u
N

F
o
r
eS

ee
N

N
Fa

l
Ψ

-T
aL

iR
o

S
T

G
E
M

A
pp

ro
ac

h:
a
r
x
-2

C
on

B
O

O
G

A
N

B
en

ch
m

ar
k
F
R

✓
S

S̃
R

F
R

✓
S

S̃
R

F
R

✓
S

S̃
R

F
R

✓
S

S̃
R

F
R

✓
S

S̃
R

F
R

✓
S

S̃
R

F
R

✓
S

S̃
R

F
R

✓
S

S̃
R

A
T

1
0

0
–

–
10

0.
0

0
0

–
–

53
.0

4
4

53
2

57
6.

8
61

.9
4

4
10

29
.5

10
82

95
.1

10
–

38
2.

4
35

4
98

.4
2

2
1.

5
1.

5
99

.5
10

10
10

6.
3

10
5.

5
73

.3
10

10
18

5.
8

15
3

29
.2

A
T

2
10

10
7.

6
5.

0
99

.9
10

10
2

5.
4

22
.3

10
10

36
51

.4
78

.6
6

6
50

1.
5

37
4

93
.5

10
–

15
.5

7
96

.5
10

10
15

.5
12

.5
54

.7
10

10
15

.3
11

10
0.

0
A

T
51

1
1

92
3.

0
92

3.
0

10
0.

0
0

0
–

–
10

10
19

2
27

4.
3

50
.3

1
1

22
.0

22
.0

91
.6

10
10

15
13

10
0.

0
A

T
52

10
10

4.
1

2.
0

99
.9

10
10

1
2.

4
10

10
31

36
.8

58
.5

10
–

6.
1

2
92

.1
10

10
3.

2
2.

5
63

.4
10

10
6.

3
3.

5
10

0.
0

A
T

53
10

10
18

.6
15

.0
10

0.
0

10
10

8
12

.8
10

10
70

74
.9

58
.2

10
–

5.
1

3.
0

91
.2

10
10

28
.0

21
.0

60
.9

10
10

2
2

10
0.

0
A

T
54

3
3

93
2.

0
86

8.
0

10
0.

0
5

5
10

1
25

4.
0

10
10

24
2

28
8.

3
53

.4
7

7
71

5.
3

54
4.

0
89

.9
10

10
18

.4
12

10
0.

0
A

T
6a

10
10

74
.4

41
.5

10
0.

0
10

10
70

93
.4

54
.0

10
10

90
96

.4
56

.6
10

4
45

7.
9

31
6

90
.7

10
–

80
.3

60
.5

97
.5

10
10

76
.6

89
.0

60
.6

10
10

74
.2

69
.5

60
.4

A
T

6b
10

10
25

1.
3

18
9.

0
10

0.
0

9
9

14
1

26
8.

0
44

.7
10

10
86

12
0.

5
53

.1
10

0
60

0.
0

56
6

91
.6

10
–

15
2.

8
15

4
97

.8
6

6
18

5.
5

15
2.

0
58

.8
10

10
12

8.
3

12
9

38
.3

A
T

6c
10

10
18

5.
2

86
.0

10
0.

0
10

10
12

2
15

4.
3

45
.7

10
10

79
90

.6
46

.4
10

0
90

1.
2

86
2

89
.9

10
–

17
9.

9
16

9
97

.7
1

1
3

3
99

.6
2

8
8

16
6.

6
10

1.
0

60
.2

10
10

89
.6

88
.5

66
.4

A
T

6a
bc

10
10

58
.8

33
.5

10
0.

0
10

10
12

2
15

4.
3

25
.7

10
10

99
14

2.
7

26
.7

10
–

12
1.

6
92

96
.0

10
10

34
.2

29
.5

37
.0

10
10

63
.8

67
.5

55
.4

N
N

10
–

38
.6

27
.5

10
0.

0
8

–
81

34
1.

9
1.

5
10

–
16

7
21

5.
3

35
.9

10
–

30
8.

7
34

1
98

.0
10

–
36

.4
35

.5
84

.1
10

–
12

0.
4

13
5.

5
50

.8
N

N
β

=
0
.0
4

0
0

–
–

2.
4

0
0

–
–

36
.4

7
–

60
7.

7
48

2
28

.6
N

N
x

0
0

–
–

2.
5

0
0

–
–

72
.7

10
–

1.
4

1.
0

85
.7

0
–

–
–

23
.9

C
C

1
10

10
10

.4
9.

5
10

0
10

10
10

.4
9.

5
10

0.
0

10
10

42
54

.7
86

.4
10

10
22

9.
2

21
4

98
.6

10
–

34
.9

37
99

.1
9

9
1.

22
1

99
.6

8
10

10
13

.1
8.

5
69

.9
10

10
33

.3
21

88
.0

C
C

2
10

10
15

.4
15

.0
10

0.
0

10
10

9
13

.8
66

.9
10

10
44

72
.1

81
.6

10
10

11
9.

0
11

9
97

.1
3

–
10

13
.7

13
51

99
.3

10
10

16
.4

11
.0

69
.3

10
10

65
.9

66
92

.1
C

C
3

10
10

77
.9

54
.5

10
0.

0
10

10
37

60
.0

58
.6

10
10

84
10

1.
7

76
.2

10
7

19
5.

2
17

8
98

.3
10

–
64

.9
63

98
.8

10
10

21
.5

15
.0

72
.3

10
10

20
.3

24
10

0.
0

C
C

4
0

0
–

–
10

0.
0

0
0

–
–

59
.9

2
2

76
4

76
4.

0
79

.9
10

–
58

1.
7

60
3

99
.2

1
1

12
53

.0
12

53
.0

93
.6

0
–

–
–

18
.5

C
C

5
10

10
28

.5
14

.5
10

0.
0

10
10

18
19

.7
75

.5
10

10
68

75
.6

80
.8

10
–

10
1.

0
76

.0
98

.9
10

10
47

.3
39

.0
80

.8
10

–
43

.7
46

.5
95

.0
C

C
x

7
7

33
8.

1
30

0.
0

10
0.

0
8

8
82

0
84

6.
4

40
.4

10
10

17
3

17
4.

5
65

.6
10

–
15

0.
2

12
0.

5
98

.5
10

10
21

0.
6

70
.0

20
.8

6
6

63
5.

3
53

4
19

.9

F
16

10
–

14
5

15
1.

1
99

.4
7

–
61

2.
1

52
2

2.
6

SC
0

0
–

–
53

.9
0

–
–

–
95

.8
0

–
–

–
7.

1

P
M

8
–

57
1.

8
44

3.
5

10
0.

0
6

–
64

3
61

4.
5

17
.1

3
–

15
1

23
9.

0
10

.8
10

–
34

.0
34

84
.6

10
–

10
1.

0
10

2.
5

91
.5

10
–

24
5.

1
16

6.
5

19
.3

163

ARCH-COMP 2023: Falsification with Unbounded Resources Menghi et al.

T
ab

le
3:

R
es

ul
ts

fo
r

co
ns

tr
ai

ne
d

in
pu

t
si

gn
al

s
(i

ns
ta

nc
e

2)
.
F
R

:
fa

ls
ifi

ca
ti

on
ra

te
,
✓

:
va

lid
at

ed
fa

ls
ifi

ca
ti

on
ra

te
,
S

:
m

ea
n

nu
m

be
r

of
si

m
ul

at
io

ns
,S̃

:
m

ed
ia

n
(r

ou
nd

ed
do

w
n)

nu
m

be
r

of
si

m
ul

at
io

ns
.

T
oo

l:
U

R
A

R
Is

T
E
O

A
T

h
eN

A
F
a
l
C
A
u
N

F
o
r
eS

ee
N

N
Fa

l
Ψ

-T
aL

iR
o

S
T

G
E
M

A
pp

ro
ac

h:
a
r
x
-2

C
on

B
O

O
G

A
N

B
en

ch
m

ar
k
F
R

✓
S

S̃
R

F
R

✓
S

S̃
R

F
R

✓
S

S̃
R

F
R

✓
S

S̃
R

F
R

✓
S

S̃
R

F
R

✓
S

S̃
R

F
R

✓
S

S̃
R

F
R

✓
S

S̃
R

A
T

1
0

0
–

–
10

0.
0

0
0

–
–

54
.4

10
10

48
8

51
1.

0
60

.8
10

10
13

0.
1

12
2

88
.8

8
8

32
9.

1
33

0
99

.5
2

2
1.

5
1.

5
99

.5
10

10
10

5.
4

10
5.

0
86

.5
10

10
18

5.
8

15
3

29
.2

A
T

2
10

10
18

.8
13

.5
99

.9
10

10
8

12
.9

79
.9

10
10

96
13

1.
7

76
.3

8
8

72
7.

9
59

6
93

.8
10

10
19

.1
17

99
.0

10
10

11
.6

11
.0

50
.6

10
10

15
.3

11
10

0.
0

A
T

51
10

10
20

.5
16

.5
10

0.
0

10
10

10
19

.0
10

10
10

8
11

4.
2

59
.7

10
10

22
.8

19
.5

98
.7

10
10

13
.7

8.
5

66
.1

10
10

15
13

10
0.

0
A

T
52

10
10

74
.1

65
.0

10
0.

0
10

10
47

10
7.

5
4

4
19

20
.5

52
.1

10
10

51
39

98
.9

10
10

79
.1

95
.0

93
.2

10
10

6.
3

3.
5

10
0.

0
A

T
53

10
10

1.
5

1.
0

99
.9

10
10

1
1.

4
10

10
1

1.
3

93
.2

10
10

3
1

96
.5

10
10

2.
7

2.
0

58
.0

10
10

2
2

10
0.

0
A

T
54

10
10

47
.9

42
.0

10
0.

0
10

10
42

55
.4

8
8

67
21

5.
5

49
.1

10
10

10
8.

8
44

99
.0

10
10

37
.7

32
.0

79
.9

10
10

18
.4

12
10

0.
0

A
T

6a
10

10
15

6.
6

13
8.

0
10

0.
0

10
10

10
2

24
1.

7
49

.6
10

10
10

9
10

8.
1

52
.6

10
10

10
4.

8
10

5
99

.3
9

9
25

5.
0

22
6.

0
52

.4
10

10
74

.2
69

.5
60

.4
A

T
6b

10
10

47
2.

2
58

8.
0

10
0.

0
10

10
19

3
41

2.
4

46
.4

10
10

13
1

13
2.

7
52

.3
10

10
28

5.
2

25
5

99
.3

9
9

58
0.

0
52

2.
0

58
.2

10
10

12
8.

3
12

9
38

.3
A

T
6c

10
10

32
6.

8
17

6.
0

10
0.

0
10

10
23

8
41

2.
4

40
.7

10
10

80
99

.2
44

.4
10

0
18

6.
6

17
2

89
.5

10
10

11
7.

8
11

1
99

.3
1

1
3

3
99

.6
2

7
7

19
1.

1
14

8.
0

58
.9

10
10

89
.6

88
.5

66
.4

A
T

6a
bc

10
10

14
9.

0
12

5.
5

10
0.

0
10

10
23

8
41

2.
4

22
.0

10
10

12
9

13
2.

6
23

.7
10

10
11

1.
7

83
98

.8
10

10
24

0.
5

74
.0

7.
8

10
10

63
.8

67
.5

55
.4

A
FC

27
0

–
–

–
10

0.
0

10
–

8
8.

5
1.

4
8

–
14

2
20

4.
2

29
.1

10
–

2.
6

2
99

.0
10

–
11

3.
2

10
9.

5
97

.8
10

–
69

.4
76

95
.0

A
FC

29
10

–
25

.1
19

.0
10

0.
0

10
–

2
5.

3
8.

5
10

–
25

31
.4

36
.6

10
–

1
1

98
.4

10
–

19
.6

19
.0

10
0.

0
10

–
11

.5
8.

5
10

0.
0

A
FC

33
0

–
–

–
10

0.
0

0
0

–
–

53
.7

0
–

–
–

35
.8

10
–

1
1

96
.4

0
–

–
–

35
.0

0
–

–
–

45
.8

N
N

10
27

7.
2

15
8.

5
10

0.
0

10
–

61
83

.7
6.

0
10

–
25

35
.8

46
.9

10
–

33
.6

33
98

.5
10

15
5.

5
10

0.
0

88
.0

10
–

12
0.

4
13

5.
5

50
.8

N
N

β
=

0
.0
4

5
–

8
91

.4
2.

9
1

–
14

75
14

75
.0

33
.9

7
–

60
7.

7
48

2
28

.6
N

N
x

8
45

7.
1

38
0.

5
10

0.
0

0
–

–
–

4.
1

0
–

–
–

67
.2

10
12

1.
5

11
9.

5
82

.6
0

–
–

–
23

.9

C
C

1
10

10
16

.4
9.

5
10

0.
0

10
10

8
9.

1
82

.5
10

10
18

34
.7

88
.1

10
8

23
.4

17
99

.0
9

9
1.

22
1

99
.6

8
10

10
10

.8
8.

0
69

.8
10

10
33

.3
21

88
.0

C
C

2
10

10
12

.4
13

.0
10

0.
0

10
10

9
10

.8
74

.7
10

10
82

66
.7

82
.4

5
5

6.
7

6
99

.3
10

10
9.

6
7.

0
67

.5
10

10
65

.9
66

92
.1

C
C

3
10

10
19

.6
21

.0
10

0.
0

10
10

13
12

.8
56

.5
10

10
50

66
.0

78
.4

10
10

22
.4

14
98

.6
10

10
11

.7
8.

0
69

.4
10

10
20

.3
24

10
0.

0
C

C
4

0
0

–
–

10
0.

0
0

0
–

–
57

.6
1

1
14

79
14

79
.0

81
.5

9
6

60
0.

6
54

2
99

.3
1

1
12

48
.0

12
48

.0
95

.9
0

–
–

–
18

.5
C

C
5

10
10

37
.4

22
.0

10
0.

0
10

10
11

21
.1

62
.3

10
10

10
8

12
7.

3
81

.7
10

10
64

.5
42

98
.9

10
10

28
.3

27
.0

72
.3

10
–

43
.7

46
.5

95
.0

C
C

x
6

6
39

6.
7

28
4.

5
10

0.
0

9
9

39
4

49
5.

4
38

.4
8

8
11

2
11

2.
1

64
.7

10
10

21
1.

2
21

3
98

.6
10

10
24

0.
5

74
.0

35
.4

6
6

63
5.

3
53

4
19

.9

SC
0

0
–

–
58

.8
0

–
–

–
95

.7
0

–
–

–
7.

1

P
M

6
–

57
5.

8
61

7.
0

10
0.

0
6

–
82

6
73

4.
7

17
.2

8
–

36
2

46
6.

4
10

.9
0

–
–

–
99

.2
10

–
12

1.
5

11
9.

5
82

.6
10

–
24

5.
1

16
6.

5
19

.3

164

ARCH-COMP 2023: Falsification with Unbounded Resources Menghi et al.

5 Probabilistic Guarantees

As done in 2022, we are still assessing tools that can provide probabilistic guarantees for falsi-
fying the system under test to understand if we can provide any conclusion about the system
under test and falsifying it. This information becomes even more critical when no falsification
is found. Providing probabilistic guarantees can help assess the system’s safety, while also
providing the quality of test samples generated.

Part-X [29] was the only tool that provided results on probabilistic guarantees: the lower
and upper confidence bounds of normalized falsification volume at 95% confidence. The Part-
X algorithm is part of the Ψ-TaLiRo tool, and is discussed in section 3.7. The results are shown
in Table 4 for both instances. We refrain from an in-depth analysis of these results.

Table 4: Results for piecewise continuous input signals (instance 1) and constrained input
signals (instance 2). FR: falsification rate, ✓: validated falsification rate, S: mean number of
simulations, S̃: median (rounded down) number of simulations, LCB : Lower Confidence Bound
at 95% confidence, UCB : Upper Confidence Bound at 95% confidence R: Non-simulation time
ratio (%). Bold entries indicate that some results could not be validated.
Tool Ψ-TaLiRo Ψ-TaLiRo
Approach Part-X Part-X
Instance 1 2

Property FR ✓ S S̃ LCB UCB R FR ✓ S S̃ LCB UCB R

AT1 10 10 34.9 28.5 0.00E+00 7.03E-04 70.7 10 10 30.5 25.5 0.00E+00 5.58E-04 85.7
AT2 10 10 6.7 5.5 9.45E-02 1.80E-01 52.8 10 10 6.5 5.0 1.16E-01 2.77E-01 50.6
AT51 0 0 – – 0.00E+00 0.00E+00 93.9 10 10 13.3 11.5 2.22E-01 5.86E-01 64.3
AT52 10 10 5.6 2.0 1.81E-01 9.02E-01 62.5 10 10 66.5 53.5 0.00E+00 0.00E+00 93.5
AT53 10 10 15.7 15.5 2.45E-02 4.26E-01 59.7 10 10 2.2 2.0 8.38E-01 1.00E+00 57.0
AT54 3 3 862.6 – 0.00E+00 3.60E-05 91.0 10 10 85.0 65.0 0.00E+00 7.68E-02 76.2
AT6a 10 10 134.3 51.5 1.18E-01 2.47E-01 58.2 10 10 153.7 72.0 5.75E-02 1.94E-01 53.1
AT6b 10 10 212.2 150.0 9.45E-02 2.88E-01 57.8 10 10 307.9 111.5 3.40E-02 1.97E-01 56.4
AT6c 10 10 200.5 138.0 9.94E-02 2.86E-01 58.1 10 10 334.4 249.5 4.34E-02 1.98E-01 59.3
AT6abc 10 10 126.1 50.0 1.02E-01 2.67E-01 68.7 10 10 106.9 67.5 5.72E-02 2.06E-01 69.4

CC1 10 10 19.0 16.5 2.71E-01 8.31E-01 69.2 10 10 17.6 21.0 2.83E-01 8.86E-01 68.7
CC2 10 10 23.9 12.0 4.82E-01 1.00E+00 68.6 10 10 17.8 12.0 2.27E-01 1.00E+00 66.3
CC3 10 9 23.1 24.0 1.28E-01 4.58E-01 69.9 10 10 13.5 12.0 1.18E-01 1.00E+00 69.5
CC4 0 0 – – 0.00E+00 0.00E+00 95.3 0 0 – – 0.00E+00 0.00E+00 94.5
CC5 10 10 45.8 29.0 3.83E-02 7.10E-01 79.4 10 10 29.9 22.5 2.09E-01 5.90E-01 73.8
CCx 9 9 681.9 703.0 0.00E+00 0.00E+00 96.0 10 10 607.1 156.0 0.00E+00 0.00E+00 96.2

NN 10 10 15.2 16.0 4.84E-01 8.80E-01 83.5 10 10 145.8 89.5 0.00E+00 1.36E-01 87.3
NNx – – – – – – – 10 10 190.7 40.0 0.00E+00 1.20E-02 66.4

SC 0 – – – 0.00E+00 0.00E+00 78.9 0 0 – – 0.00E+00 2.70E-05 45.5

F16 0 – – – 0.00E+00 0.00E+00 39.2 – – – – – – –

AFC27 – – – – – – – 10 0 34.3 27.0 5.90E-01 7.27E-01 89.4
AFC29 – – – – – – – 10 0 12.1 11.0 2.31E-01 5.36E-01 87.9
AFC33 – – – – – – – 0 0 – – 0.00E+00 0.00E+00 96.1

PM 10 23.5 22.0 6.75E-3 7.13E-3 80.9 8 253.6 26.5 0.00E+00 3.44E-3 82.7

165

ARCH-COMP 2023: Falsification with Unbounded Resources Menghi et al.

6 Conclusion and Outlook

The extension of the benchmark set with the Pacemaker benchmark enabled a more extensive
comparison of existing tools, which now also includes a model and requirement from the medical
domain. The requirement is not trivially falsified. This competition enables maintaining this
benchmark, which is getting traction in the falsification literature, maintained and updated.

The participation of new tools (ATheNA [18], NNFal [28], and STGEM [34]) shows that this
competition has been getting attention over the years. The tools now use completely different
technologies that are challenging to compare. However, the results reported in Tables 2 and 3
can provide a starting point for this comparison. Based on our data, we remark that there is no
“best” approach, and the different solutions offer pros and cons that engineers should consider
when selecting the appropriate falsification tool. Notice that some tools did not consider all the
models and requirements. Considering only some models and requirements was permitted since
models use different Simulink features, often requiring some tuning of the falsification tools.
This tuning is often not easy, especially for new participants.

Gidon Ernst, Tanmay Khandait, and Walstan Baptista were pivotal for enabling the valida-
tion of the results. They set up the validation platform, which was far from trivial, and had to
solve many technical challenges. In addition, they provided a timely and thorough support to
the other participants during the validation of the results. Our findings stress the importance of
their work and of validating experimental data, especially in a well-defined comparative setting.
This experience is shared with other competitions like SV-COMP (which has validation since
2016 [6]), Test-Comp (which had independent coverage evaluation from the start in 2019 [7]),
and many other competitions (for an overview, see [4]).

We have several items on our agenda for the following year’s competition. First, we would
like to facilitate the adoption of Python-based benchmark models from Matlab-based bench-
marks. Supporting Python programs will require a careful revision of the rules of the com-
petition. Second, we would like to employ the automatic repeatability evaluation platform
provided by the organizers of the ARCH competition. Considering the number of participants,
and the tight deadlines, we decided to postpone the usage of this platform this year since it
would have required participants to invest additional time in learning the use of the replication
platform. Finally, we would like to stimulate and expand the competition rules related to the
tools supporting probabilistic guarantees.

Acknowledgments Many thanks to the organizers of the ARCH workshop 2023 for hosting
this competition and for providing a supportive and friendly environment. The organizer thanks
all participants for their time and patience during investigation of the discrepancies found during
validation. The participants thank Gidon Ernst, Tanmay Khandait, and Walstan Baptista for
developing the validation platform and for their support during the validation phase.

C. Menghi and F. Formica are supported by the Natural Sciences and Engineering Research
Council of Canada (NSERC), [funding reference number RGPIN-2022-04622,DGECR-2022-
0040]. P. Arcaini is supported by Engineerable AI Techniques for Practical Applications of
High-Quality Machine Learning-based Systems Project (Grant Number JPMJMI20B8), JST-
Mirai; and ERATO HASUO Metamathematics for Systems Design Project (No. JPMJER1603),
JST, Funding Reference number: 10.13039/501100009024. The ASU team (Ψ-TaLiRo) was
partially supported by DARPA FA8750-20-C-0507, NSF CMMI 2046588, NSF CNS 2000792,
and NSF CMMI 1829238. Z. Zhang is supported by JSPS KAKENHI Grant No. JP23K16865
and Grant No. JP23H03372. J. Peltomäki and I. Porres are supported by the ECSEL Joint
Undertaking (JU) under grant agreement No 101007350. The JU receives support from the

166

ARCH-COMP 2023: Falsification with Unbounded Resources Menghi et al.

European Union’s Horizon 2021 research and innovation programme and Sweden, Austria,
Czech Republic, Finland, France, Italy, Spain. M. Waga is partially supported by JST ACT-X
Grant Number JPMJAX200U, JSPS KAKENHI Grant Number JP22K17873, and JST CREST
Grant Number JPMJCR2012, Japan.

References

[1] Yashwanth Annpureddy, Che Liu, Georgios Fainekos, and Sriram Sankaranarayanan. S-TaLiRo:
A tool for temporal logic falsification for hybrid systems. In International Conference on Tools
and Algorithms for the Construction and Analysis of Systems, pages 254–257. Springer, 2011.

[2] Anne Auger and Nikolaus Hansen. A restart CMA evolution strategy with increasing population
size. In IEEE Congress on Evolutionary Computation, CEC 2005, pages 1769–1776, 2005.

[3] Mostafa Ayesh, Namya Mehan, Ethan Dhanraj, Abdul El-Rahwan, Simon Emil Opalka, Tony Fan,
Akil Hamilton, Akshay Mathews Jacob, Rahul Anthony Sundarrajan, Bryan Widjaja, and Claudio
Menghi. Two simulink models with requirements for a simple controller of a pacemaker device.
In International Workshop on Applied Verification of Continuous and Hybrid Systems (ARCH22),
EPiC Series in Computing, pages 18–25. EasyChair, 2022.

[4] Ezio Bartocci, Dirk Beyer, Paul E Black, Grigory Fedyukovich, Hubert Garavel, Arnd Hartmanns,
Marieke Huisman, Fabrice Kordon, Julian Nagele, Mihaela Sighireanu, et al. Toolympics 2019: An
overview of competitions in formal methods. In International Conference on Tools and Algorithms
for the Construction and Analysis of Systems, pages 3–24. Springer, 2019.

[5] Ezio Bartocci, Jyotirmoy Deshmukh, Alexandre Donzé, Georgios Fainekos, Oded Maler, Dejan
Ničković, and Sriram Sankaranarayanan. Specification-based monitoring of cyber-physical systems:
a survey on theory, tools and applications. In Lectures on Runtime Verification, pages 135–175.
Springer, 2018.

[6] Dirk Beyer. Reliable and reproducible competition results with benchexec and witnesses (report
on SV-COMP 2016). In International Conference on Tools and Algorithms for the Construction
and Analysis of Systems, pages 887–904. Springer, 2016.

[7] Dirk Beyer. International competition on software testing (Test-Comp). In International Con-
ference on Tools and Algorithms for the Construction and Analysis of Systems, pages 167–175.
Springer, 2019.

[8] Anthony Corso, Robert J Moss, Mark Koren, Ritchie Lee, and Mykel J Kochenderfer. A survey
of algorithms for black-box safety validation. arXiv preprint arXiv:2005.02979, 2020.

[9] Adel Dokhanchi, Shakiba Yaghoubi, Bardh Hoxha, and Georgios Fainekos. ARCH-COMP17 cat-
egory report: Preliminary results on the falsification benchmarks. In ARCH17. International
Workshop on Applied Verification of Continuous and Hybrid Systems, EPiC Series in Computing,
pages 170–174. EasyChair, 2017.

[10] Adel Dokhanchi, Shakiba Yaghoubi, Bardh Hoxha, Georgios Fainekos, Gidon Ernst, Zhenya Zhang,
Paolo Arcaini, Ichiro Hasuo, and Sean Sedwards. ARCH-COMP18 category report: Results on
the falsification benchmarks. In ARCH18. International Workshop on Applied Verification of
Continuous and Hybrid Systems, EPiC Series in Computing, pages 104–109. EasyChair, 2018.

[11] Johan Liden Eddeland, Alexandre Donze, Sajed Miremadi, and Knut Akesson. Industrial temporal
logic specifications for falsification of cyber-physical systems. In ARCH@CPSIoTWeek, 2020.

[12] Gidon Ernst, Paolo Arcaini, Ismail Bennani, Aniruddh Chandratre, Alexandre Donzé, Georgios
Fainekos, Goran Frehse, Khouloud Gaaloul, Jun Inoue, Tanmay Khandait, Logan Mathesen, Clau-
dio Menghi, Giulia Pedrielli, Marc Pouzet, Masaki Waga, Shakiba Yaghoubi, Yoriyuki Yamagata,
and Zhenya Zhang. ARCH-COMP 2021 category report: Falsification with validation of results.
In International Workshop on Applied Verification of Continuous and Hybrid Systems (ARCH21),
EPiC Series in Computing, pages 133–152. EasyChair, 2021.

167

ARCH-COMP 2023: Falsification with Unbounded Resources Menghi et al.

[13] Gidon Ernst, Paolo Arcaini, Ismail Bennani, Alexandre Donzé, Georgios Fainekos, Goran Frehse,
Logan Mathesen, Claudio Menghi, Giulia Pedrielli, Marc Pouzet, Shakiba Yaghoubi, Yoriyuki
Yamagata, and Zhenya Zhang. ARCH-COMP 2020 category report: Falsification. In ARCH20.
International Workshop on Applied Verification of Continuous and Hybrid Systems (ARCH20),
EPiC Series in Computing, pages 140–152. EasyChair, 2020.

[14] Gidon Ernst, Paolo Arcaini, Alexandre Donzé, Georgios Fainekos, Logan Mathesen, Giulia
Pedrielli, Shakiba Yaghoubi, Yoriyuki Yamagata, and Zhenya Zhang. ARCH-COMP 2019 category
report: Falsification. In ARCH19. International Workshop on Applied Verification of Continuous
and Hybrid Systems, EPiC Series in Computing, pages 129–140. EasyChair, 2019.

[15] Gidon Ernst, Paolo Arcaini, Georgios Fainekos, Federico Formica, Jun Inoue, Tanmay Khandait,
Mohammad Mahdi Mahboob, Claudio Menghi, Giulia Pedrielli, Masaki Waga, Yoriyuki Yamagata,
and Zhenya Zhang. Arch-comp 2022 category report: Falsification with ubounded resources. In
International Workshop on Applied Verification of Continuous and Hybrid Systems (ARCH22),
EPiC Series in Computing, pages 204–221. EasyChair, 2022.

[16] Gidon Ernst, Sean Sedwards, Zhenya Zhang, and Ichiro Hasuo. Fast falsification of hybrid systems
using probabilistically adaptive input. arXiv preprint arXiv:1812.04159, 2018.

[17] Georgios E. Fainekos and George J. Pappas. Robustness of temporal logic specifications. In
Klaus Havelund, Manuel Núñez, Grigore Roşu, and Burkhart Wolff, editors, Formal Approaches
to Software Testing and Runtime Verification, LNCS, pages 178–192. Springer, 2006.

[18] Federico Formica, Mehrnoosh Askarpour, and Claudio Menghi. Search-based software test-
ing driven by automatically generated and manually defined fitness functions. arXiv preprint
arXiv:2207.11016, 2022.

[19] Martin Fränzle and Michael R Hansen. A robust interpretation of duration calculus. In Interna-
tional Colloquium on Theoretical Aspects of Computing, pages 257–271. Springer, 2005.

[20] Peter Heidlauf, Alexander Collins, Michael Bolender, and Stanley Bak. Verification challenges
in F-16 ground collision avoidance and other automated maneuvers. In ARCH18. International
Workshop on Applied Verification of Continuous and Hybrid Systems, EPiC Series in Computing,
pages 208–217. EasyChair, 2018.

[21] Bardh Hoxha, Houssam Abbas, and Georgios Fainekos. Benchmarks for temporal logic require-
ments for automotive systems. In ARCH14-15. International Workshop on Applied veRification
for Continuous and Hybrid Systems, EPiC Series in Computing, pages 25–30. EasyChair, 2015.

[22] Jianghai Hu, John Lygeros, and Shankar Sastry. Towards a theory of stochastic hybrid systems. In
International Workshop on Hybrid Systems: Computation and Control, pages 160–173. Springer,
2000.

[23] Xiaoqing Jin, Jyotirmoy V. Deshmukh, James Kapinski, Koichi Ueda, and Ken Butts. Powertrain
control verification benchmark. In International Conference on Hybrid Systems: Computation and
Control, pages 253–262. ACM, 2014.

[24] Ron Koymans. Specifying real-time properties with metric temporal logic. Real-time systems,
2(4):255–299, 1990.

[25] Oded Maler and Dejan Nickovic. Monitoring temporal properties of continuous signals. In Yassine
Lakhnech and Sergio Yovine, editors, Formal Techniques, Modelling and Analysis of Timed and
Fault-Tolerant Systems, pages 152–166. Springer, 2004.

[26] Claudio Menghi, Shiva Nejati, Lionel Briand, and Yago Isasi Parache. Approximation-refinement
testing of compute-intensive cyber-physical models: An approach based on system identification.
In International Conference on Software Engineering (ICSE). IEEE / ACM, 2020.

[27] Dejan Ničković and Tomoya Yamaguchi. RTAMT: Online Robustness Monitors from STL. In
Automated Technology for Verification and Analysis: International Symposium (ATVA), page
564–571. Springer-Verlag, 2020.

[28] NNFal. https://gitlab.com/Atanukundu/NNFal, 04 2023 [Online].
[29] Giulia Pedrielli, Tanmay Khandait, Surdeep Chotaliya, Quinn Thibeault, Hao Huang, Mauricio

168

https://gitlab.com/Atanukundu/NNFal

ARCH-COMP 2023: Falsification with Unbounded Resources Menghi et al.

Castillo-Effen, and Georgios Fainekos. Part-X: A family of stochastic algorithms for search-based
test generation with probabilistic guarantees. https://arxiv.org/abs/2110.10729, 2021.

[30] Doron Peled, Moshe Y Vardi, and Mihalis Yannakakis. Black box checking. In Formal Methods
for Protocol Engineering and Distributed Systems: FORTE XII/PSTV XIX’99 IFIP TC6 WG6.
International Conference on Formal Description Techniques for Distributed Systems and Com-
munication Protocols (FORTE XII) and Protocol Specification, Testing and Verification (PSTV
XIX), pages 225–240. Springer, 1999.

[31] Jarkko Peltomäki and Ivan Porres. Falsification of multiple requirements for cyber-physical systems
using online generative adversarial networks and multi-armed bandits. In IEEE International
Conference on Software Testing, Verification and Validation Workshops (ICSTW), pages 21–28,
2022.

[32] Jarkko Peltomäki, Frankie Spencer, and Ivan Porres. Wasserstein generative adversarial networks
for online test generation for cyber physical systems. In IEEE/ACM International Workshop on
Search-Based Software Testing, SBST 2022, page 1–5, 2022.

[33] Ivan Porres, Hergys Rexha, and Sebastien Lafond. Online GANs for automatic performance test-
ing. In IEEE International Conference on Software Testing, Verification and Validation Workshops
(ICSTW 2021), pages 95–100, 2021.

[34] STGEM. https://gitlab.abo.fi/stc/stgem, 04 2023 [Online].
[35] Quinn Thibeault, Jacob Anderson, Aniruddh Chandratre, Giulia Pedrielli, and Georgios Fainekos.

PSY-TaLiRo: A Python Toolbox for Search-Based Test Generation for Cyber-Physical Systems.
In Formal Methods for Industrial Critical Systems, pages 223–231. Springer, 2021.

[36] Masaki Waga. Falsification of cyber-physical systems with robustness-guided black-box checking.
In International Conference on Hybrid Systems: Computation and Control (HSCC), pages 11:1–
11:13. ACM, 2020.

[37] Shakiba Yaghoubi and Georgios Fainekos. Gray-box adversarial testing for control systems with
machine learning components. In International Conference on Hybrid Systems: Computation and
Control (HSCC), 2019.

[38] Yoriyuki Yamagata, Shuang Liu, Takumi Akazaki, Yihai Duan, and Jianye Hao. Falsification
of cyber-physical systems using deep reinforcement learning. IEEE Transactions on Software
Engineering, 47(12):2823–2840, 2021.

[39] Zhenya Zhang, Deyun Lyu, Paolo Arcaini, Lei Ma, Ichiro Hasuo, and Jianjun Zhao. Effective Hy-
brid System Falsification Using Monte Carlo Tree Search Guided by QB-Robustness. In Computer
Aided Verification, pages 595–618. Springer, 2021.

169

https://arxiv.org/abs/2110.10729
https://gitlab.abo.fi/stc/stgem

	Introduction
	Benchmark
	Input Parameterization
	Models and Requirements

	Participants
	ARIsTEO
	ATheNA
	FalCAuN
	ForeSee
	NNFal
	STGEM
	-TaLiRo

	Evaluation & Validation
	Setup
	Results

	Probabilistic Guarantees
	Conclusion and Outlook

